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PREFACE TO THE SECOND
ENGLISH EDITION

For this edition the book has been enlarged and the treatment in some places

revised. The revision has, however, been incomplete to the extent that the

book does not include topics related to the successful application in recent

years of the methods of quantum field theory to statistical physics.

The reason for this is that we have always attempted to construct the Course

of TheoreticalPhysics as describing a single science, interlinking the discussion

of its various branches in the different volumes. According to the general plan

of the Course, this volume should have followed the one on quantum field

theory, and the discussion of the above-mentioned methods in this book

should have been based on the development of them in the previous volume.

Since the latter has not yet been completed, it was not possible to include these

methods in the present edition.

To my profound regret, L. D. Landau, my teacher and friend, has been pre-

vented by injuries received in a road accident from personally contributing to

the preparation of this new edition.

April 1966 E. M. LlFSHITZ

The publishers learnt with deep regret of

the death of Professor L. D. Landau in

April 1968 while this volume was in press.



FROM THE PREFACE TO THE FIRST
ENGLISH EDITION

The present volume of the Theoretical Physics series is devoted to an exposi-

tion of statistical physics and thermodynamics. These two subjects are firmly

interconnected, and in our opinion it is rational to present them together as

one whole.

As in the other volumes, we have endeavoured, on the one hand, to state the

general principles as clearly as possible, and, on the other hand, to present

their many specific applications as fully as possible. However, the present

book does not contain the theory of electric and magnetic properties of mat-

ter, which are treated in another volume which is dealing with the electrody-

namics of material media. Similarly, problems ofnon-equilibrium phenomena

are not treated; we propose to consider these in a separate volume.

We have not included in this book the various theories of ordinary liquids

and of strong solutions, which to us appear neither convincing nor useful.

We do not share the view, which one encounters sometimes, that statistical

physics is the least well-founded branch of theoretical physics (as regards its

basic principles). We believe that the difficulties are created artificially, because

the problems are often not stated sufficiently rationally. If one talks from the

very beginning about the statistical distribution for small parts of a system

(subsystems) and not for a closed system as a whole, then one avoids the whole

question of the ergodic or similar hypotheses, which are not really essential for

physical statistics.

Moscow L. D. Landau

E. M. Lifshitz



NOTATION

Operators are denoted by a circumflex

Phase space

p, q generalised momenta and co-ordinates

dp dq = d/>! dp* • • • dp, d#x dq 2 . dq, volume element in phase space

(with s degrees of freedom)

dr = dp dql(27ifi)
s

. . . dT integral over all physically different states

Thermodynamic quantities

T temperature

V volume
P pressure

E energy

S entropy

W = E+PV heat function

F = E—TS free energy

= E—TS+PV thermodynamic potential

Q = —PV thermodynamic potential

c„, Cv specific heats

Cp> c v molecular specific heats

N number of particles

V chemical potential

a surface-tension coefficient
3 area of interface

In all formulae the temperature is expressed in energy units; the method of converting

to degrees is described in footnotes to §§9 and 42.



CHAPTER I

THE FUNDAMENTAL PRINCIPLES
OF STATISTICAL PHYSICS

§1. Statistical distributions

Statistical physics, often called for brevity simply statistics, consists in the

study of the special laws which govern the behaviour and properties of mac-

roscopic bodies (that is, bodies formed of a very large number of individual

particles, such as atoms and molecules). To a considerable extent the general

character of these laws does not depend on the mechanics (classical or quan-

tum) which describes the motion of the individual particles in a body, but

their substantiation demands a different argument in the two cases. For con-

venience of exposition we shall begin by assuming that classical mechanics is

everywhere valid.

In principle, we can obtain complete information concerning the motion of

a mechanical system by constructing and integrating the equations of motion

of the system, which are equal in number to its degrees of freedom. But if we

are concerned with a system which, though it obeys the laws of classical me-

chanics, has a very large number of degrees of freedom, the actual application

of the methods of mechanics involves the necessity of setting up and solving

the same number of differential equations, which in general is impracticable.

It should be emphasised that, even if we could integrate these equations in a

general form, it would be completely impossible to substitute in the general

solution the initial conditions for the velocities and co-ordinates of the par-

ticles, if only because of the amount of time and paper that would be needed.

At first sight we might conclude from this that, as the number of particles

increases, so also must the complexity and intricacy of the properties of the

mechanical system, and that no trace of regularity can be found in the behav-

iour of a macroscopic body. This is not so, however, and we shall see below

that, when the number of particles is very large, new types of regularity appear.

These statistical laws resulting from the very presence of a large number of

particles forming the body cannot in any way be reduced to purely mechanical

laws. One of their distinctive features is that they cease to have meaning when

applied to mechanical systems with a small number of degrees of freedom.

Thus, although the motion of systems with a very large number of degrees of

freedom obeys the same laws of mechanics as that of systems consisting of a
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small number of particles, the existence of many degrees of freedom results in

laws of a different kind.

The importance of statistical physics in many other branches of theoretical

physics is due to the fact that in Nature we continually encounter macroscopic

bodies whose behaviour can not be fully described by the methods of mechan-

ics alone, for the reasons mentioned above, and which obey statistical laws.

In proceeding to formulate the fundamental problem of classical statistics,

we must first of all define the concept ofphase space, which will be constantly

used hereafter.

Let a given macroscopic mechanical system have s degrees of freedom: that

is, let the position of points of the system in space be described by s co-

ordinates, which we denote by qt
, the suffix i taking the values 1, 2, . . ., s.

Then the state of the system at a given instant will be defined by the values at

that instant of the s co-ordinates q{
and the s corresponding velocities q\. In

statistics it is customary to describe a system by its co-ordinates and momenta

pit
not velocities, since this affords a number of very important advantages.

The various states of the system can be represented mathematically by points

in phase space (which is, of course, a purely mathematical concept); the co-

ordinates in phase space are the co-ordinates and momenta of the system con-

sidered. Every system has its own phase space, with a number of dimensions

equal to twice the number of degrees of freedom. Any point in phase space,

corresponding to particular values of the co-ordinates qi
and momenta pi

of

the system, represents a particular state of the system. The state of the system

changes with time, and consequently the point in phase space representing

this state (whichwe shall call simply the phase point of the system) moves along

a curve called the phase trajectory.

Let us now consider a macroscopic body or system of bodies, and assume

that the system is closed, i.e. does not interact with any other bodies. A part of

the system, which is very small compared with the whole system but still mac-

roscopic, may be imagined to be separated from the rest; clearly, when the

number of particles in the whole system is sufficiently large, the number in a

small part of it may still be very large. Such relatively small but still macro-

scopic parts will be called subsystems. A subsystem is again a mechanical sys-

tem, but not a closed one; on the contrary, it interacts in various ways with

the other parts of the system. Because of the very large number of degrees of

freedom of the other parts, these interactions will be very complex and intri-

cate. Thus the state of the subsystem considered will vary with time in a very

complex and intricate manner.

An exact solution for the behaviour of the subsystem can be obtained only

by solving the mechanical problem for the entire closed system, i.e. by setting

up and solving all the differential equations of motion with given initial condi-

tions, which, as already mentioned, is an impracticable task. Fortunately, it
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is just this very complicated manner of variation of the state of subsystems

which, though rendering the methods of mechanics inapplicable, allows a

different approach to the solution of the problem.

A fundamental feature of this approach is the fact that, because of the

extreme complexity of the external interactions with the other parts of the

system, during a sufficiently long time the subsystem considered will be many
times in every possible state. This maybe more precisely formulated as follows.

Let Ap Aq denote some small "volume" of the phase space of the subsystem,

corresponding to co-ordinates q{
and momenta p{

lying in short intervals Aq
i

and Apv We can say that, in a sufficiently long time T, the extremely intricate

phase trajectory passes many times through each such volume of phase space.

Let At be the part of the total time T during which the subsystem was in the

given volume of phase space Ap Aq.f When the total time T increases inde-

finitely, the ratio At/T tends to some limit

w = lim At/T. (1.1)

This quantity may clearly be regarded as the probability that, if the subsystem

is observed at an arbitrary instant, it will be found in the given volume of

phase space Ap Aq.

On taking the limit of an infinitesimal phase volume*

dq dp =* d$i dq2 . . . dqa dpx dp% . . . dps , (1 .2)

we can define the probability dw of states represented by points in this volume
element, i.e. the probability that the co-ordinates q i

and momenta pi
have val-

ues in given infinitesimal intervals between q{ , p{
and q^+dq^ Pi+&Pi- This

probability dw may be written

dw = Q(pu ...,p8 ,qi, . . ., q8) dp dq, (1.3)

where q — (pu . ..,p8 , qi, . .

.

, qs) is a function of all the co-ordinates and
momenta; we shall usually write for brevity g(p, q) or even q simply. The
function q, which represents the "density" of the probability distribution in

phase space, is called the statistical distribution function, or simply the distri-

bution function, for the body concerned. This function must obviously satisfy

the normalisation condition

I
gdpdq=\ (1.4)

t For brevity, we shall usually say, as is customary, that the system "is in the volume
Ap Aq of phase space", meaning that the system is in states represented by phase points in

that volume.

% In what follows we shall always use the conventional notation dp and dq to denote the
products of the differentials of all the momenta and all the co-ordinates of the system re-

spectively.
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(the integral being taken over all phase space), which simply expresses the fact

that the sum of the probabilities of all possible states must be unity.

The following circumstance is extremely important in statistical physics.

The statistical distribution of a given subsystem does not depend on the initial

state of any other small part of the same system, since over a sufficiently long

time the effect of this initial state will be entirely outweighed by the effect of

the much larger remaining parts of the system. It is also independent of the

initial state of the particular small part considered, since in time this part

passes through all possible states, any of which can be taken as the initial state.

Without having to solve the mechanical problem for a system (taking account

of initial conditions), we can therefore find the statistical distribution for small

parts of the system.

The determination of the statistical distribution for any subsystem is in

fact the fundamental problem of statistical physics. In speaking of "small

parts" of a closed system, we must bear in mind that the macroscopic bodies

with which we have to deal are usually themselves such "small parts" ofa large

closed system consisting of these bodies together with the external medium
which surrounds them.

If this problem is solved and the statistical distribution for a given subsystem

is known, we can calculate the probabilities of various values of any physical

quantities which depend on the states of the subsystem (i.e. on the values of

its co-ordinates q and momenta/?).We can also calculate the mean value of any

such quantity /(p, q), which is obtained by multiplying each of its possible val-

ues by the corresponding probability and integrating over all states. Denoting

the averaging by a bar, we can write

/= [f(p,q)Q(p,q)dpdq, (1.5)

-J-

from which the mean values of various quantities can be calculated by using

the statistical distribution function.

The averaging with respect to the distribution function (called statistical

averaging) frees us from the necessity of following the variation with time of

the actual value of the physical quantityf(p, q) in order to determine its mean
value. It is also obvious that, by the definition (1.1) of the probability, the sta-

tistical averaging is exactly equivalent to a time averaging. The latter would

involve following the variation of the quantity with time, establishing the func-

tion / = f(t), and determining the required mean value as

/= Urn If/COd/.

o
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The foregoing discussion shows that the deductions and predictions con-

cerning the behaviour of macroscopic bodies which are made possible by
statistical physics are probabilistic. In this respect statistical physics differs

from (classical) mechanics, the deductions of which are entirely deterministic.

It should be emphasised, however, that the probabilistic nature of the results

of classical statistics is not an inherent property of the objects considered,

but simply arises from the fact that these results are derived from much less

information than would be necessary for a complete mechanical description

(the initial values of the co-ordinates and momenta are not needed).

In practice, however, when statistical physics is applied to macroscopic

bodies, its probabilistic nature is not usually apparent. The reason is that,

if any macroscopic body (in external conditions independent of time) is

observed over a sufficiently long period of time, it is found that all physical

quantities1" describing the body are practically constant (and equal to their

mean values) and undergo appreciable changes relatively very rarely.* This

result, which is fundamental to statistical physics, follows from very general

considerations (to be discussed in §2) and becomes more and more nearly

valid as the body considered becomes more complex and larger. In terms of

the statistical distribution, we can say that, if by means of the function

Q(<2> P) we construct the probability distribution function for various values

of the quantity f(p, q), this function will have an extremely sharp maximum
for/ = /, and will be appreciably different from zero only in the immediate

vicinity of this point.

Thus, by enabling us to calculate the mean values of quantities describing

macroscopic bodies, statistical physics enables us to make predictions which

are valid to very high accuracy for by far the greater part of any time interval

which is long enough for the effect of the initial state of the body to be entirely

eliminated. In this sense the predictions of statistical physics become practi-

cally determinate and not probabilistic. (For this reason, we shall hence-

forward almost always omit the bar when using mean values of macroscopic

quantities.)

If a closed macroscopic system is in a state such that in any macroscopic

subsystem the "macroscopic" physical quantities are to a high degree of

accuracy equal to their mean values, the system is said to be in a state of

statistical equilibrium (or thermodynamic or thermal equilibrium). It is seen

from the foregoing that, if a closed macroscopic system is observed for a

t We mean, of course, macroscopic quantities describing the body as a whole or macro
scopic parts of it, but not individual particles.

t We may give an example to illustrate the very high degree of accuracy with which this
is true. If we consider a region in a gas which contains, say, only 1/100 gram-molecule, we
find that the mean relative variation of the energy of this quantity of matter from its mean
value is only ~ 10

- ". The probability of finding (in a single observation) a relative devia-

tion of the order of 10 -6 , say, is given by a fantastically small number, ~io- 3 xi°M
.
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sufficiently long period of time, it will be in a state of statistical equilibrium

for much the greater part of this period. If, at any initial instant, a closed

macroscopic system was not in a state of statistical equilibrium (if, for ex-

ample, it was artificially disturbed from such a state by means of an external

interaction and then left to itself, becoming again a closed system), it will

necessarily enter an equilibrium state. The time within which it will reach

statistical equilibrium is called the relaxation time. In using the term "suffi-

ciently long" intervals oftime, we have meant essentially times long compared

with the relaxation time.

The theory of processes relating to the attainment of an equilibrium state

is called kinetics. It is not part of statistical physics proper, which deals

only with systems in statistical equilibrium, and which is the subject of this

book.
1-

§2. Statistical independence

The subsystems discussed in §1 are not themselves closed systems; on the

contrary, they are subject to the continuous interaction of the remaining

parts of the system. But since these parts, which are small in comparison with

the whole of the large system, are themselves macroscopic bodies also, we can

still suppose that over not too long intervals of time they behave approxi-

mately as closed systems. For the particles which mainly take part in the

interaction of a subsystem with the surrounding parts are those near the

surface of the subsystem; the relative number of such particles, compared

with the total number of particles in the subsystem, decreases rapidly when

the size of the subsystem increases, and when the latter is sufficiently large

the energy of its interaction with the surrounding parts will be small in com-

parison with its internal energy. Thus we may say that the subsystems are

quasi-closed. It should be emphasised once more that this property holds

only over not too long intervals of time. Over a sufficiently long interval

of time, the effect of interaction of subsystems, however weak, will ultimately

appear. Moreover, it is just this relatively weak interaction which leads

finally to the establishment of statistical equilibrium.

The fact that different subsystems may be regarded as weakly interacting

has the result that they may also be regarded as statistically independent.

By statistical independence we mean that the state of one subsystem does not

affect the probabilities of various states of the other subsystems.

Let us consider any two subsystems, and let dpwdq{1) and d/?
(2)d#(2) be

volume elements in their phase spaces. If we regard the two subsystems

together as one composite subsystem, then the statistical independence of the

t Problems of kinetics appear only in §§122 and 123.
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subsystems signifies mathematically that the probability of the composite

subsystem's being in its phase volume element dp{12)dq{12) = dpwdqW '

d/>
(2)dg(2) can be written as the product of the probabilities for the two

subsystems to be respectively in dp{1)dqa) and d/?
(2)d?(2)

, each of these

probabilities depending only on the co-ordinates and momenta of the sub-

system concerned. Thus we can write

Ql2 dp™dqil2) = M/?(1)
d<7

(1) -M/>
(2)

d<7
(2)

,

or

Q12 = Q1Q2, (2-1)

where £12 is the statistical distribution of the composite subsystem, and

gi, 02 the distribution functions of the separate subsystems. A similar relation

is valid for a group of several subsystems.1

The converse statement is clearly also true: if the probability distribution

for a compound system is a product of factors, each of which depends only

on quantities describing one part of the system, then the parts concerned

are statistically independent, and each factor is proportional to the proba-

bility of the state of the corresponding part.

Iffx and U are two physical quantities relating to two different subsystems,

then from (2.1) and the definition (1.5) of mean values it follows immediately

that the mean value of the product fif2 is equal to the product of the mean

values of the quantities /1 and/2 separately:

J7h=fiJi- (2-2)

Let us consider a quantity / relating to a macroscopic body or to a part

of it. In the course of time this quantity varies, fluctuating about its mean

value. We may define a quantity which represents the average range of this

fluctuation. The mean value of the difference Af = f—J is not suitable for

this purpose, since the quantity /varies from its mean value in both directions,

and the difference /-/, which is alternately positive and negative, has mean

value zero regardless of how often /undergoes considerable deviations from

its mean value. The required characteristic may conveniently be defined as

the mean square of this difference. Since (Af)2 is always positive, its mean

value tends to zero only if (Af)2 itself tends to zero; that is, the mean value

is small only when the probability of considerable deviations of / from

/is small. The quantity -y/[(Af)
2
] = ^[(f-ff] is called the root-mean-square

(r.m.s.) fluctuation of the quantity /. It may be noted that

(Af) 2 =f2-2ff+f2

= P-2ff+P,
t Provided, of course, that these subsystems together still form only a small part of the

whole closed system.
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whence

(Zl/) 2 =/2_ (/)2) (23)

i.e. the r.m.s. fluctuation is determined by the difference between the mean
square of the quantity and the square of its mean.

The ratio -^[(df)2]// is called the relative fluctuation of the quantity /. The
smaller this ratio is, the more negligible is the proportion of time during

which the body is in states where the deviation of/from its mean value is a

considerable fraction of the mean value.

We shall show that the relative fluctuations of physical quantities decrease

rapidly when the size of the bodies (that is, the number of particles) to which

they relate increases. To prove this, we first note that the majority of quan-

tities of physical interest are additive. This property is a consequence of the

fact that the various parts of a body are quasi-closed systems, and signifies

that the value of such a quantity for the whole body is the sum of its values

for the various (macroscopic) parts of the body. For example, since the

internal energies of these parts are, as shown above, large compared with

their interaction energies, it is sufficiently accurate to assume that the energy

of the whole body is equal to the sum of the energies of its parts.

Let / be such an additive quantity. We imagine the body concerned to

be divided into a large number N of approximately equal small parts. Then
JV

f=YJ fi, where the quantities f{
relate to the individual parts, and like-

wise for the mean value we have

N _
/= S/i.

i=l

It is clear that, as the number of parts increases, /increases approximately

in proportion to JV. Let us also determine the r.m.s. fluctuation of /. We have

(4/y = (24/D
2

.

i

Because of the statistical independence of the different parts of the body, the

mean values of the products Afi^fk are

since each Af
{
= 0. Hence

N
(4/)

2 = E (4/D
2

. <2 -4)

It follows that, as N increases, the mean square (Aff also increases in pro-

portion to N. The relative fluctuation is therefore inversely proportional
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tO y/N\

VK4/)2
] ^ JL (2.5)

On the other hand, if we consider a homogeneous body to be divided into

parts of a given small size, it is clear that the number of parts will be propor-

tional to the total number of particles (molecules) in the body. Hence the

result can also be stated by saying that the relative fluctuation of any additive

quantity / decreases inversely as the square root of the number of particles

in a macroscopic body, and so, when the number of these is sufficiently large,

the quantity/itself may be regarded as practically constant in time and equal

to its mean value. This conclusion has already been used in §1

.

§3. Liouville's theorem

Let us now return to a further study of the properties of the statistical

distribution function, and suppose that a subsystem is observed over a very

long interval of time, which we divide into a very large (in the limit, infinite)

number of equal short intervals between instants tx, t2 , At each of

these instants the subsystem considered is represented in its phase space by a

point A x , A 2 , The set of points thus obtained is distributed in phase

space with a density which in the limit is everywhere proportional to the

distribution function g(p, q). This follows from the significance of the latter

function as determining the probabilities of various states of the subsystem.

Instead of considering points representing states of one subsystem at

different instants t1} t2 , . .
.
, we may consider simultaneously, in a purely

formal manner, a very large (in the limit, infinite) number of exactly identical

subsystems
1-

, which at some instant, say t = 0, are in states represented by

the points Ax, A%, ....

We now follow the subsequent movement of the phase points which rep-

resent the states of these subsystems over a not too long interval of time,

such that a quasi-closed subsystem may with sufficient accuracy be regarded

as closed. The movement of the phase points will then obey the equations

of motion, which involve the co-ordinates and momenta only of the particles

in the subsystem.

It is clear that at any instant t these points will be distributed in phase

space according to the same distribution function g(p, q), in just the same

way as at / = 0. In other words, as the phase points move about in the

course of time, they remain distributed with a density which is constant at

any given point and is proportional to the corresponding value of q.

t Such an imaginary set of identical systems is usually called a statistical ensemble.
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This movement of phase points may be formally regarded as a steady flow

of a "gas" in phase space of 2s dimensions, and the familiar equation of

continuity may be applied, which expresses the constancy of the total number

of "particles" (in this case, phase points) in the gas. The ordinary equation

of continuity is

dgldt+div(gv) = 0,

where g is the density and v the velocity of the gas. For steady flow, where

dg/dt = 0, we have

div (qv) = 0.

For a space of many dimensions, this will become

d_

dxj

2s Q

Z^r(^i) = °-

i=l

In the present case the "co-ordinates" x
t
are the co-ordinates q and momenta

p, and the "velocities" v
t
= x

t
are the time derivatives q and p given by the

equations of motion. Thus we have

^kd+^{QPi) = 0.

dqi dpi
= 0. (3.1)

Expanding the derivatives gives

« r. dg^. dgl »

With the equations of motion in Hamilton's form:

qt
= dH/dpi, ^ = -dH/dqi}

where H = H(p, q) is the Hamiltonian for the subsystem considered, we see

that

dqjdqi = d*H/dqi dPi = -dpi/dpi.

The second term in (3.1) is therefore identically zero. The first term is just

the total time derivative of the distribution function. Thus

dg

dt -ie-8*)-* (3.2)

We therefore reach the important conclusion that the distribution function

is constant along the phase trajectories of the subsystem. This is Liouville's

theorem. Since quasi-closed subsystems are under discussion, the result is

valid only for not too long intervals of time, during which the subsystem

behaves as if closed, to a sufficient approximation.
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§4. The significance of energy

It follows at once from Liouville's theorem that the distribution function

must be expressible entirely in terms of combinations of the variables p and

q which remain constant when the subsystem moves as a closed subsystem.

These combinations are the mechanical invariants or integrals of the motion,

which are the first integrals of the equations of motion. We may therefore

say that the distribution function, being a function of the mechanical inva-

riants, is itself an integral of the motion.

It proves possible to restrict very considerably the number of integrals

of the motion on which the distribution function can depend. To do this, we

must take into account the fact that the distribution £12 for a combination

of two subsystems is equal to the product of the distribution functions Q\

and Qz of the two subsystems separately: gi2 = Q1Q2. (see (2.1)). Hence

log £12 = log pi+log £2, (4.1)

so that the logarithm of the distribution function is an additive quantity

We therefore reach the conclusion that the logarithm of the distribution

function must be not merely an integral of the motion, but an additive integral

of the motion.

As we know from mechanics, there exist only seven independent additive

integrals of the motion : the energy, the three components of the momentum
vector and the three components of the angular momentum vector. We shall

denote these quantities for the ath. subsystem (as functions of the co-ordinates

and momenta of the particles in it) by Ea(p, q), Pa(p, q), Ma(p, q) respectively.

The only additive combination of these quantities is a linear combination

of the form

log Qa = <*a+pEa(p, q)+ V-Pa(p, q)+d.Ma(p, q) (4.2)

with constant coefficients <xa , /?, y, 8, of which £, y, 8 must be the same

for all subsystems in a given closed system.

We shall return in Chapter III to a detailed study of the distribution (4.2);

here we need note only the following points. The coefficient <xa is just the

normalisation constant, given by the condition / Qa d/>
(a) d#(a) = 1 . The con-

stants /?, y, 8, involving seven independent quantities altogether, may be

determined from the seven constant values of the additive integrals of the

motion for the whole closed system. Thus we reach a conclusion very im-

portant in statistical physics. The values of the additive integrals of the motion

(energy, momentum and angular momentum) completely define the statistical

properties of a closed system, i.e. the statistical distribution of any of its

subsystems, and therefore the mean values of any physical quantities relating

to them. These seven additive integrals of the motion replace the unimaginable
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multiplicity of data (initial conditions) which would be required in the

approach from mechanics.

The above arguments enable us at once to set up a simple distribution

function suitable for describing the statistical properties of a closed system.

Since, as we have seen, the values of non-additive integrals of the motion do
not affect these properties, the latter can be described by any function q which
depends only on the values of the additive integrals of the motion for the

system and which satisfies Liouville's theorem. The simplest such function

is o = constant for all points in phase space which correspond to given

constant values of the energy (£" ), momentum (P ) and angular momentum
(Mo) of the system (regardless of the values of the non-additive integrals)

and q = at all other points. It is clear that a function so defined will cer-

tainly remain constant along a phase trajectory of the system, i.e. will satisfy

Liouville's theorem.

This formulation, however, is not quite exact. The reason is that the points

defined by the equations

E(p,q)=E , P(p,g) = P , M(p, q) = M (4.3)

form a manifold of only 2s— 7 dimensions, not 2s like the phase volume.

Consequently, if the integral fgdpdq is to be different from zero, the function

g(p, I) must become infinite at these points. The correct way of writing the

distribution function for a closed system is

o = constantX<5(£-£ )<5(P-P )<5(M-M ). (4.4)

The presence of the delta functions* ensures that q is zero at all points in

phase space where one or more of the quantities E, P, M is not equal to the

given value £0, Po or Mo. The integral of g over the whole of a phase volume

which includes all or part of the above-mentioned manifold of points is finite.

The distribution (4.4) is called microcanonicalX

The momentum and angular momentum of a closed system depend on its

motion as a whole (uniform translation and uniform rotation). We can there-

fore say that the statistical state of a system executing a given motion depends

only on its energy. In consequence, energy is of exceptional importance in

statistical physics.

In order to exclude the momentum and angular momentum from the sub-

sequent discussion we may use the following device. We imagine the system

t The definition and properties of the delta function are given, for example, in Quantum
Mechanics, §5.

\ It should be emphasised once more that this distribution is not the true statistical

distribution for a closed system. Regarding it as the true distribution is equivalent to assert-

ing that, in the course of a sufficiently long time, the phase trajectory of a closed system

passes arbitrarily close to every point of the manifold defined by equations (4.3). But this

assertion (called the ergodic hypothesis) is certainly not true in general.
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to be enclosed in a rigid "box" and take co-ordinates such that the "box" is

at rest. Under these conditions the momentum and angular momentum are

not integrals of the motion, and the only remaining additive integral of the

motion is the energy. The presence of the "box", on the other hand, clearly

does not affect the statistical properties of small parts of the system (subsys-

tems). Thus for the logarithms of the distribution functions of the subsystems,

instead of (4.2), we have the still simpler expressions

log Qa = «a+pEa(p, q). (4.5)

The microcanonical distribution for the whole system is

q = constantXd(E-E ). (4.6)

So far we have assumed that the closed system as a whole is in statistical

equilibrium; that is, we have considered it over times long compared with its

relaxation time. In practice, however, it is usually necessary to discuss a system

over times comparable with or even short relative to the relaxation time. For

large systems this can be done, owing to the existence of what are called

partial (or incomplete) equilibria as well as the complete statistical equilibrium

of the entire closed system. Such equilibria occur because the relaxation time

increases with the size of the system, and so the separate small parts of the

system attain the equilibrium state considerably more quickly than equi-

librium is established between these small parts. This means that each small

part of the system is described by a distribution function of the form (4.2),

with the parameters 0, 7, 8 of the distribution having different values for

different parts. In such a case the system is said to be in partial equilibrium.

In the course of time, the partial equilibrium gradually becomes complete,

and the parameters /3, y, d for each small part slowly vary and finally become

equal throughout the closed system.

Another kind of partial equilibrium is also of frequent occurrence, namely

that resulting from a difference in the rates of the various processes occurring

in the system, not from a considerable difference in relaxation time between

the system and its small parts. One obvious example is the partial equilibrium

in a mixture of several substances involved in a chemical reaction. Owing to

the comparative slowness of chemical reactions, equilibrium as regards the

motion of the molecules will be reached, in general, considerably more rapidly

than equilibrium as regards reactions of molecules, i.e. as regards the com-

position of the mixture. This enables us to regard the partial equilibria of the

mixture as equilibria at a given (actually non-equilibrium) chemical com-

position.

The existence of equilibria leads to the concept of macroscopic states of a

system. Whereas a mechanical microscopic description of the system specifies
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the co-ordinates and momenta of every particle in the system, a macroscopic

description is one which specifies the mean values of the physical quantities

determining a particular partial equilibrium, for instance the mean values of

quantities describing separate sufficiently small but macroscopic parts of the

system, each of which may be regarded as being in a separate equilibrium.

§5. The statistical matrix

Turning now to the distinctive features of quantum statistics, we may note

first of all that the purely mechanical approach to the problem of determining

the behaviour of a macroscopic body in quantum mechanics is of course just

as hopeless as in classical mechanics. Such an approach would require the

solution of SchrOdinger's equation for a system consisting of all the particles

in the body, a problem still more hopeless, one might even say, than the

integration of the classical equations of motion. But even if it were possible

in some particular case to find a general solution of Schrodinger's equation,

it would be utterly impossible to select and write down the particular solution

satisfying the precise conditions of the problem and specified by particular

values of an enormous number of different quantum numbers. Moreover, we
shall see below that for a macroscopic body the concept of stationary states

itself becomes to some extent arbitrary, a fact of fundamental significance.

Let us first elucidate some purely quantum-mechanical features of macro-

scopic bodies as compared with systems consisting ofa relatively small number
of particles.

These features amount to an extremely high density of levels in the energy

eigenvalue spectrum of a macroscopic body. The reason for this is easily seen

if we note that, because of the very large number of particles in the body, a

given quantity of energy can, roughly speaking, be "distributed" in innumer-

able ways among the various particles. The relation between this fact and the

high density of levels becomes particularly clear if we take as an example a

macroscopic body consisting of a "gas" ofN particles which do not interact

at all, enclosed in some volume. The energy levels of such a system are just

the sums of the energies of the individual particles, and the energy of each

particle can range over an infinite series of discrete values.1"

It is clear that, on

choosing in all possible ways the values .of the JV terms in this sum, we shall

obtain a very large number of possible values of the energy of the system in

any appreciable finite part of the spectrum, and these values will therefore lie

very close together.

t The separations between successive energy levels of a single particle are inversely

proportional to the square of the linear dimensions L of the volume enclosing it (~fPlmL2
,

where m is the mass of the particle and ft the quantum constant).
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It may be shown (see (7.18)) that the number of levels in a given finite

range of the energy spectrum of a macroscopic body increases exponentially

with the number of particles in the body, and the separations between levels

are given by numbers of the form 10"N (where N is a number of the order

of the number of particles in the body), whatever the units, since a change in

the unit of energy has no effect on such a fantastically small number.1

In consequence of the extremely high density of levels, a macroscopic body

in practice can never be in a strictly stationary state. First of all, it is clear

that the value of the energy of the system will always be "broadened" by

an amount of the order of the energy of interaction between the system and

the surrounding bodies. The latter is very large in comparison with the separa-

tions between levels, not only for quasi-closed subsystems but also for systems

which from any other aspect could be regarded as strictly closed. In Nature,

of course, there are no completely closed systems, whose interaction with any

other body is exactly zero; and whatever interaction does exist, even if it is

so small that it does not affect other properties of the system, will still be very

large in comparison with the infinitesimal intervals in the energy spectrum.

In addition to this, there is another fundamental reason why a macroscopic

body in practice cannot be in a stationary state. It is known from quantum

mechanics that the state of a quantum-mechanical system described by a wave

function is the result of some process of interaction of the system with another

system which obeys classical mechanics to a sufficient approximation. In this

respect the occurrence of a stationary state implies particular properties of

the system. Here we must distinguish between the energy E of the system

before the interaction and the energy E' of the state which results from the

interaction. The uncertainties AE and AE' in the quantities E and E' are

related to the duration At of the interaction process by the formula*

\AE'-AE\ ~ h\At.

The two errors AE and AE' are in general of the same order of magnitude, and

analysis shows that we cannot make AE' <k AE. We can therefore say that

AE' ~ ft/At. In order that the state may be regarded as stationary, the un-

certainty AE' must certainly be small in comparison with the separations

between adjoining levels. Since the latter are extremely small, we see that, in

order to bring the macroscopic body into a particular stationary state, an

t It should be mentioned that this discussion is inapplicable to the initial part of the

energy spectrum; the separations between the first few energy levels of a macroscopic body

may even be independent of the size of the body, as for instance in the electron spectrum

in a dielectric (see §70). This point, however, does not affect the subsequent conclusions:

when referred to a single particle, the separations between the first few levels for a macro-

scopic body are negligibly small, and the high density of levels mentioned in the text is

reached for very small values of the energy relative to a single particle.

t See Quantum Mechanics, §44.
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extremely long time At ~ fi/AE' would be necessary. In other words, we again

conclude that strictly stationary states of a macroscopic body cannot exist.

To describe the state of a macroscopic body by a wave function at all is

impracticable, since the available data concerning the state of such a body are

far short of the complete set of data necessary to establish its wave function.

Here the position is somewhat similar to that which occurs in classical statis-

tics, where the impossibility of taking account of the initial conditions for

every particle in a body makes impossible an exact mechanical description of

its behaviour ; the analogy is imperfect, however, since the impossibility of a

complete quantum-mechanical description and the lack of a wave function

describing a macroscopic body may, as we have seen, possess a much more

profound significance.

The quantum-mechanical description based on an incomplete set of data

concerning the system is effected by means of what is called a density matrix.^

A knowledge of this matrix enables us to calculate the mean value of any

quantity describing the system, and also the probabilities of various values of

such quantities. The incompleteness of the description lies in the fact that the

results of various kinds of measurement which can be predicted with a certain

probability from a knowledge of the density matrix might be predictable with

greater or even complete certainty from a complete set of data for the system,

from which its wave function could be derived.

We shall not pause to write out here the formulae of quantum mechanics

relating to the density matrix in the co-ordinate representation, since this

representation is seldom used in statistical physics, but we shall show how the

density matrix may be obtained directly in the energy representation, which is

necessary for statistical applications.

Let us consider some subsystem, and define its "stationary states" as the

states obtained when all interactions of the subsystem with the surrounding

parts of a closed system are entirely neglected. Let ipn(q) be the normalised

wave functions of these states (without the time factor), q conventionally

denoting the set of all co-ordinates of the subsystem, and the suffix n the set

of all quantum numbers which distinguish the various stationary states ; the

energies of these states will be denoted by En .

Let us assume that at some instant the subsystem is in a completely descri-

bed state with wave function W. The latter may be expanded in terms of the

functions ipn(q), which form a complete set; we write the expansion as

Y=lcnWn . (5.1)
n

The mean value of any quantity / in this state can be calculated from the

t See Quantum Mechanics, §14.
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coefficients cn by means of the formula

f — L,L, cn cmJnmi (•>*)

n m
where

fnm= Vn*fV>mdq (5,3)

are the matrix elements of the quantity/(/ being the corresponding operator).

The change from the complete to the incomplete quantum-mechanical

description of the subsystem may be regarded as a kind of averaging over its

various W states. In this averaging, the products c*cm give a double set (two

suffixes) of quantities, which we denote by wmn and which cannot be expressed

as products of any quantities forming a single set. The mean value of/ is now

given by

/ = EI>mn/nm. (5-4)
m n

The set of quantities wmn (which in general are functions of time) is the

density matrix in the energy representation; in statistical physics it is called

the statistical matrix.*

If we regard the wmn as the matrix elements of some statistical operator

w, then the sum £ wmnfnm will be a diagonal matrix element of the operator

^ n

product wf, and mean value/ becomes the trace (sum of diagonal elements)

of this operator:

/=£(^/)nn=tT(w/). (5.5)
n

This formula has the advantage of enabling us to calculate with any com-

plete set of orthonormal wave functions : the trace of an operator is independ-

ent of the particular set of functions with respect to which the matrix ele-

ments are defined.*

The other expressions of quantum mechanics which involve the quantities

cn are similarly modified, the products c* cm being everywhere replaced by

the "averaged values" wmn :

For example, the probability that the subsystem is in the nth state is equal

to the corresponding diagonal element wnn of the density matrix (instead of

the squared modulus c* cn). It is evident that these elements, which we shall

denote by wn , are always positive

:

wn = wnn > 0, (5.6)

t The energy representation is mentioned here, as being the one generally used in statis-

tical physics. We have not so far, however, made direct use of the fact that the rpH are wave
functions of stationary states. It is therefore clear that the same method could be used to

define the density matrix with respect to any complete set of wave functions.

t See Quantum Mechanics, §12.
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and satisfy the normalisation condition

trvv = £wn =l (5.7)
n

(corresponding to the condition ]T
|
cn |

2 = 1).

n

It must be emphasised that the averaging over various !P states, which we

have used in order to illustrate the transition from a complete to an incom-

plete quantum-mechanical description, has only a very formal significance.

In particular, it would be quite incorrect to suppose that the description by

means of the density matrix signifies that the subsystem can be in various 5*

states with various probabilities and that the averaging is over these proba-

bilities. Such a treatment would be in conflict with the basic principles of

quantum mechanics.

The states of a quantum-mechanical system that are described by wave

functions are sometimes called pure states, as distinct from mixed states, which

are described by a density matrix. Care should, however, be taken not to

misunderstand the latter term in the way indicated above.

The averaging by means of the statistical matrix according to (5.4) has a

twofold nature. It comprises both the averaging due to the probabilistic

nature of the quantum description (even when as complete as possible) and

the statistical averaging necessitated by the incompleteness of our informa-

tion concerning the object considered. For a pure state only the first averaging

remains, but in statistical cases both types of averaging are always present.

It must be borne in mind, however, that these constituents cannot be separated

;

the whole averaging procedure is carried out as a single operation, and

cannot be represented as the result of successive averagings, one purely

quantum-mechanical and the other purely statistical.

The statistical matrix in quantum statistics takes the place of the distribu-

tion function in classical statistics. The whole of the discussion in the previous

sections concerning classical statistics and the, in practice, deterministic

nature of its predictions applies entirely to quantum statistics also. The proof

given in §2 that the relative fluctuations of additive physical quantities tend

to zero as the number of particles increases made no use of any specific prop-

erties of classical mechanics, and so remains entirely valid in the quantum

case. We can therefore again assert that macroscopic quantities remain prac-

tically equal to their mean values.

In classical statistics the distribution function o(p, q) gives directly the

probability distribution of the various values of the co-ordinates and

momenta of the particles of the body. In quantum statistics this is no longer

true; the quantities wn give only the probabilities of finding the body in a

particular quantum state, with no direct indication of the values of the co-

ordinates and momenta of the particles.
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From the very nature of quantum mechanics, the statistics based on it can

deal only with the determination of the probability distribution for the co-

ordinates and momenta separately, not together, since the co-ordinates and

momenta ofa particle cannot simultaneously have definite values. The required

probability distributions must reflect both the statistical uncertainty and

the uncertainty inherent in the quantum-mechanical description. To find these

distributions, we repeat the arguments given above. We first assume that the

body is in a pure quantum state with the wave function (5.1). The probability

distribution for the co-ordinates is given by the squared modulus

Ym>

so that the probability that the co-ordinates have values in a given interval

dq = dqi dq2 . . • dq8
is dw

q
=

|
Y\2 dq. For a mixed state, the products cn*cm

are replaced by the elements wmn of the statistical matrix, and
|
}P

|

2 thus

becomes

EEwwWvw
n m

By the definition of the matrix elements,

m
and so

' EE wmnVn*Vm = Ev>n*ftVn-
n m n

Thus we have the following formula for the co-ordinate probability distri-

bution:

dWq = EVn*WVn- d^ (5 -8 )

n

In this expression the functions \pn may be any complete set of normalised

wave functions.

Let us next determine the momentum probability distribution. The quan-

tum states in which all the momenta have definite values correspond to free

motion of all the particles. We denote the wave functions of these states by

y>p(q),
the suffix /> conventionally representing the set of values of all the mo-

menta. As we know, the diagonal elements of the density matrix are the proba-

bilities that the system is in the corresponding quantum states. Hence, having

determined the density matrix with respect to the set of functions yp , we obtain

the required momentum probability distribution from the formula
1,

dwp = wpp dp = dp- \ y>p*mpp dq, (5.9)

where dp = dpi dp2 .

.

. dps
.

t The functions xpp are assumed normalised by the delta function of all the momenta.
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It is interesting that both distributions (co-ordinate and momentum) can

be obtained by integrating the same function,

/ = Vp*fa)ftypfo). (5 - 10)

Integration of this expression with respect to q gives the momentum distribu-

tion, and with respect to p gives the co-ordinate distribution (the expression

(5.8) with the functions ip
p
as the complete set of wave functions). It should be

emphasised, however, that this does not mean that the function (5.10) may

be regarded as a probability distribution for co-ordinates and momenta simul-

taneously: the expression (5.10) is complex, quite apart from the fact that

such a view would conflict with the basic principles of quantum mechanics.

§6. Statistical distributions in quantum statistics

In quantum mechanics a theorem can be proved which is entirely analogous

to Liouville's theorem derived in §3 on the basis of classical mechanics.

To do this, we first derive a general equation of quantum mechanics which

gives the time derivative of the statistical matrix of any (closed) system.t

Following the method used in §5, we first assume that the system is in a pure

state with a wave function represented in the form of a series (5.1). Since the

system is closed, its wave function will have the same form at all subsequent

instants, but the coefficients cn will depend on the time, being proportional to

factors e~ lEnt/h
. We therefore have

r) i

jjT \cn cm) ~ T" \Pn~

E

m)Cn cm-

The change to the statistical matrix in the general case of mixed states is now
effected by replacing the products c*cmby wmn , and this gives the required

equation

:

Wmn = (.i/K)(En-Em)wmn . (6.1)

This equation can be written in a general operator form by noticing that

(En—Em)wmn = Y,(WmlHln— Hmlwln)->

I

where Hmn are the matrix elements of the Hamiltonian H of the system; this

matrix is diagonal in the energy representation, which we are using. Hence

w = (i/fi)(wH-Hw). (6.2)

It should be pointed out that this expression differs in sign from the usual

quantum-mechanical expression for the operator of the time derivative of a

quantity.

t In §5 the density matrix of a subsystem was discussed, having regard to its fundamental

applications in statistical physics, but a density matrix can of course also be used to describe

a closed system in a mixed state.
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We see that, if the time derivative of the statistical matrix is zero, the oper-

ator w must commute with the Hamiltonian of the system. This result is the

quantum analogue of Liouville's theorem : in classical mechanics the requi-

rement of a stationary distribution function has the result that w is an integral

of the motion, while the commutability of the operator of a quantity with the

Hamiltonian is just the condition, in quantum mechanics, that that quantity

is conserved.

In the energy representation used here, the condition is particularly simple

:

(6.1) shows that the matrix wmn must be diagonal, again in accordance with

the usual matrix condition that a quantity is conserved in quantum mechan-

ics, namely that the matrix of such a quantity can be brought to diagonal

form simultaneously with the Hamiltonian.

As in §3, we can now apply the results obtained to quasi-closed subsystems,

for intervals of time during which they behave to a sufficient approximation

as closed systems. Since the statistical distributions (or in this case the statis-

tical matrices) of subsystems must be stationary, by the definition of statis-

tical equilibrium, we first of all conclude that the matrices wmn are diagonal

for all subsystems. 1" The problem of determining the statistical distribution

therefore amounts to a calculation of the probabilities wn = wnn , which repre-

sent the "distribution function" in quantum statistics. Formula (5.4) for the

mean value ofany quantity / becomes simply

/ = S wnfnn, (6-3)
n

and contains only the diagonal matrix elements fnn .

Next, using the facts that w must be a quantum-mechanical "integral of

the motion" and that the subsystems are quasi-independent, we find in an

entirely similar way to the derivation of (4.5) that the logarithm of the distri-

bution function for subsystems must be of the form

log wn<a> = <x.W+PEn(aK (6.4)

where the index a corresponds to the various subsystems. Thus the probabil-

ities wn can be expressed as a function of the energy level alone: wn = w(En).
Finally, the discussion in §4 concerning the significance of additive inte-

grals of the motion, and in particular the energy, as determining all the statis-

tical properties of a closed system, remains entirely valid. This again enables

us to set up for a closed system a simple distribution function suitable for

describing its statistical properties though (as in the classical case) certainly

not the true distribution function.

t Since this statement involves neglecting the interactions between subsystems, it is more
precise to say that the non-diagonal elements wmH tend to zero as the relative importance
of these interactions decreases, and therefore as the number of particles in the subsystems
increases.
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To formulate mathematically this "quantum microcanonical distribution"

we must use the following device. The energy spectra of macroscopic bodies

being "almost continuous", we make use of the concept of the number of

quantum states of a closed system which "belong" to a particular infinitesimal

range of values of its energy.* We denote this number by dP; it plays a part

analogous to that of the phase volume element dp dq in the classical case.

If we regard a closed system as consisting of subsystems, and neglect the

interaction of the latter, every state of the whole system can be described by

specifying the states of the individual subsystems, and the number dJ" is a

product
dr = ndra (6.5)

a

of the numbers dra of the quantum states of the subsystems (such that the

sum of the energies of the subsystems lies in the specified interval of energy

of the whole system).

We can now formulate the microcanonical distribution analogously to the

classical expression (4.6), writing

dw = constantX d(E-E ) IIdra (6.6)
a

for the probability dw of finding the system in any of the dr states.

§7. Entropy

Let us consider a closed system for a period of time long compared with

its relaxation time; this implies that the system is in complete statistical

equilibrium.

The following discussion will be given first of all for quantum statistics.

Let us divide the system into a large number of macroscopic parts (sub-

systems) and consider any one of them. Let wn be the distribution function

for this subsystem; to simplify the formulae we shall at present omit from wn
(and other quantities) the sufl&x indicating the subsystem. By means of the

function wn we can, in particular, calculate the probability distribution of

the various values of the energy E of the subsystem. We have seen that wn
may be written as a function of the energy alone, wn = w^EJ (6.4). In order

to obtain the probability W(E) dE that the subsystem has an energy between

E and E+dE, we must multiply w(E) by the number of quantum states with

energies in this interval; here we use the same idea of a "broadened" energy

spectrum as was mentioned at the end of §6. Let r(E) denote the number of

quantum states with energies less than or equal to E. Then the required

t It will be remembered that in §4 we agreed to ignore entirely the momentum and angular

momentum of the system as a whole, for which purpose it is sufficient to consider a system

enclosed in a rigid "box" with co-ordinates such that the box is at rest.
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number of states with energy betweenE andE+dE can be written

dE
dii

'

and the energy probability distribution is

W(E) = ^Qw(E). (7.1)

The normalisation condition

W{E)dE= 1

!
signifies geometrically that the area under the curve W = W(E) is unity.

In accordance with the general statements in §1, the function W(E) has a

very sharp maximum at E = E, being appreciably different from zero only

in the immediate neighbourhood of this point. We may define the "width"

AE of the curve W = W(E) as the width of a rectangle whose height is equal

to the value of the function W{E) at the maximum and whose area is unity

:

W{E)AE=\. (7.2)

Using the expression (7.1), we can write this definition as

w(E)Ar=\, (7.3)

where

Ar=z dimAE (74)

is the number of quantum states corresponding to the interval AE of energy.

The quantityAT thus defined may be said to represent the "degree of broad-

ening" of the macroscopic state of the subsystem with respect to its micro-

scopic states. The interval AE is equal in order of magnitude to the mean
fluctuation of energy of the subsystem.

These definitions can be immediately applied to classical statistics, except

that the function w(E) must be replaced by the classical distribution function

q, and Ar by the volume of the part of phase space defined by the form a

Q(E)ApAq = 1. (7.5)

The phase volume Ap Aq, like Ar, represents the size of the region of phase

space in which the subsystem will almost always be found.

It is not difficult to establish the relation between Ar in quantum theory

and Ap Aq in the limit of classical theory. In the quasi-classical case, which is

close to classical mechanics, a correspondence can be set up between the vol-

ume of a region of phase space and the "corresponding" number of quantum
statest : we can say that a "cell" of volume {2jih)

s (where s is the number of

t See Quantum Mechanics, §48.
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degrees of freedom of the system) "corresponds" in phase space to each

quantum state. It is therefore clear that in the quasi-classical case the number
of statesATmay be written

Ar = ApAq/(2jtfi)s
, (7.6)

where s is the number of degrees of freedom of the subsystem considered.

This formula gives the required relation between Ar and ApAq.

The quantity Ar is called the statistical weight of the macroscopic state of

the subsystem, and its logarithm

S = log Ar (7.7)

is called the entropy of the subsystem. In the case of classical statistics the

corresponding expression is

The entropy thus defined is dimensionless, like the statistical weight itself.

Since the number of states Ar is not less than unity, the entropy cannot be

negative. The concept of entropy is one of the most important in statistical

physics.

It is apposite to mention that, if we adhere strictly to the standpoint of

classical statistics, the concept of the "number of microscopic states" cannot

be defined at all, and we should have to define the statistical weight simply as

ApAq. But this quantity, like any volume in phase space, has the dimensions

of the product of s momenta and s co-ordinates, i.e. the 5th power of action

((erg^sec)8). The entropy, defined as log ApAq, would then have the peculiar

dimensions of the logarithm of action. This means that the entropy would

change by an additive constant when the unit of action changed : if the unit

were changed by a factor a, ApAq would become asApAq, and log ApAq would

become log ApAq+s log a. In purely classical statistics, therefore, the entropy

is defined only to within an additive constant which depends on the choice

of units, and only differences of entropy, i.e. changes of entropy in a given

process, are definite quantities independent of the choice of units.

This accounts for the appearance of the quantum constant h in the defi-

nition (7.8) of the entropy for classical statistics. Only the concept of the

number of discrete quantum states, which necessarily involves a non-zero

quantum constant, enables us to define a dimensionless statistical weight and

so to give an unambiguous definition of the entropy.

We may write the definition of the entropy in another form, expressing

it directly in terms of the distribution function. According to (6.4), the loga-

rithm of the distribution function of a subsystem has the form

logiv(£n) = a+/S£n .
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Since this expression is linear inEn , the quantity

log w(E) = x+pE

can be written as the mean value log h^JEJ. The entropy S = log AT =
— log w(E) (from (7.3)) can therefore be written

S = - log w(EJ, (7.9)

i.e. the entropy can be defined as minus the mean logarithm of the distribu-

tion function of the subsystem. From the significance of the mean value,

S= -2>n logw>n ; (7.10)
n

this expression can be written in a general operator form independent of the

choice of the set of wave functions with respect to which the statistical

matrix elements are defined :*

S= - tr (iv log w). (7.11)

Similarly, in classical statistics, the definition of the entropy can be written

S = - log [(M)*q]

= ~ \Q log [(2jin)8o] dp dq. (7. 12)

Let us now return to the closed system as a whole, and let AT\, Ar2, . .

.

be the statistical weights of its various subsystems. If each of the subsystems

can be in one ofATa quantum states, this gives

Ar = nAra (7.13)
a

as the number of different states of the whole system. This is called the statis-

tical weight of the closed system, and its logarithm is the entropy 5" of the

system. Clearly

S = Z Sa> (7.14)
a

i.e. the entropy thus defined is additive: the entropy of a composite system is

equal to the sum of the entropies of its parts.

For a clear understanding of the way in which entropy is defined, it is

important to bear in mind the following point. The entropy of a closed system
(whose total energy we denote by E ) in complete statistical equilibrium can
also be defined directly, without dividing the system into subsystems. To do
this, we imagine that the system considered is actually only a small part of a

t In accordance with the general rules, the operator log w must be understood as an
operator whose eigenvalues are equal to the logarithms of the eigenvalues of the operator
w, and whose eigenfunctions are the same as those of ft.
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fictitious very large system (called in this connection a thermostat or heat

bath). The thermostat is assumed to be in complete equilibrium, in such a

way that the mean energy of the system considered (which is now a non-

closed subsystem of the thermostat) is equal to its actual energy Eq. Then we

can formally assign to the system a distribution function of the same form as

for any subsystem of it, and by means of this distribution determine its statis-

tical weight AT, and therefore the entropy, directly from the same formulae

(7.3)-(7.12) as were used for subsystems. It is clear that the presence of the

thermostat has no effect on the statistical properties of individual small parts

(subsystems) of the system considered, which in any case are not closed and

are in equilibrium with the remaining parts of the system. The presence of

the thermostat therefore does not alter the statistical weights ATa of these

parts, and the statistical weight defined in the way just described will be the

same as that previously defined as the product (7. 1 3).

So far we have assumed that the closed system is in complete statistical

equilibrium. We must now generalise the above definitions to systems in

arbitrary macroscopic states (partial equilibria).

Let us suppose that the system is in some state of partial equilibrium, and

consider it over time intervals At which are small compared with the relaxation

time for complete equilibrium. Then the entropy must be defined as follows.

We imagine the system divided into parts so small that their respective relax-

ation times are small compared with the intervals At (remembering that the

relaxation times in general decrease with decreasing size of the system).

During the time At such systems may be regarded as being in their own partic-

ular equilibrium states, described by certain distribution functions. We can

therefore apply to them the previous definition of the statistical weights AFa ,

and so calculate their entropies Sa . The statistical weight AF of the whole

system is then defined as the product (7.13), and the corresponding entropy S

as the sum of the entropies Sa .

It should be emphasised, however, that the entropy of a non-equilibrium

system, defined in this way as the sum of the entropies of its parts (satis-

fying the above condition), cannot now be calculated by means of the ther-

mostat concept without dividing the system into parts. At the same time this

definition is unambiguous in the sense that further division of the subsystems

into even smaller parts does not alter the value of the entropy, since each

subsystem is already in "complete" internal equilibrium.

In particular, attention should be drawn to the significance of time in the

definition of entropy. The entropy is a quantity which describes the average

properties of a body over some non-zero interval of time At. If At is given, to

determine S we must imagine the body divided into parts so small that their

relaxation times are small in comparison with At. Since these parts must also

themselves be macroscopic, it is clear that when the intervals At are too short
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the concept of entropy becomes meaningless ; in particular, we cannot speak

of its instantaneous value.

Having thus given a complete definition of the entropy, let us now ascertain

the most important properties and the fundamental physical significance of

this quantity. To do so, we must make use of the microcanonical distribution,

according to which a distribution function of the form (6.6) may be used to

describe the statistical properties of a closed system

:

dw = const&ntX d(E-E )-IIdTa.

a

Here d//'a may be taken as the differential of the function rjEa), which rep-

resents the number of quantum states of a subsystem with energies less than

or equal to Ea . We can write dw as

dw = constantX d(E-E ) • 77 (drjdEa) dEa . (7.15)
a

The statistical weight ATa , by definition, is a function of the mean energyEa

of the subsystem; the same applies to Sa = Sa(Ea). Let us now formally re-

gard Ara and Sa as functions of the actual energy Ea (the same functions as

they really are of EJ. Then we can replace the derivatives dra{Ea)ldEa in

(7.15) by the ratios ArjAEa, where ATa is a function of Ea in this sense, and
AEa the interval of energy corresponding to ATa (also a function ofEa). Fi-

nally, replacing ATa by es«(E«>, we obtain

dw = constantX d(E-

E

)esII dEJAEa , (7.16)
a

where

S = ZSa(Ea)
a

is the entropy of the whole closed system, regarded as a function of the exact

values of the energies of its parts. The factor es, whose exponent is an additive

quantity, is a very rapidly varying function of the energies Ea . In comparison
with this function, the energy dependence of the quantity TIAEa is quite un-

important, and we can therefore replace (7.16) with very high accuracy by

dw = constantX b\E-E )esII dEa. (7. 1 7)
a

But dw expressed in a form proportional to the product of all the differential-

dEa is just the probability that all the subsystems have energies in given inters

vals between Ea and Ea+dEa . Thus we see that this probability is determined
by the entropy of the system as a function of the energies of the subsystems;

the factor b\E— Eo) ensures that the sumE = £Ea has the given valueE of the
energy of the system. This property of the entropy, as we shall see later, is the

basis of its applications in statistical physics.
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We know that the most probable values of the energies Ea are their mean val-

ues Ea . This means that the function S(EX , E2 , . . .)must have its maximum

possible value (for a given value of the sum £ Ea
= E ) when Ea = Ea . But

the Ea are just the values of the energies of the subsystems which correspond

to complete statistical equilibrium of the system. Thus we reach the important

conclusion that the entropy of a closed system in a state of complete statistical

equilibrium has its greatest possible value (for a given energy of the system).

Finally, we may mention another interesting interpretation of the function

S = S{E), the entropy of any subsystem or closed system; in the latter case it

is assumed that the system is in complete equilibrium, so that its entropy may

be expressed as a function of its total energy alone. The statistical weight

Ar = e
S{E

\ by definition, is the number of energy levels in the interval AE
which describes in a certain way the width of the energy probability distribu-

tion. Dividing AE by Ar, we obtain the mean separation between adjoining

levels in this interval (near the energy E) of the energy spectrum of the system

considered. Denoting this distance by D(E), we can write

D(E) = AE>e-sw. (7.18)

Thus the function S(E) determines the density of levels in the energy spectrum

of a macroscopic system. Since the entropy is additive, we can say that the

mean separations between the levels of a macroscopic body decrease exponen-

tially with increasing size of the body (i.e. with increasing number of particles

in it).

§8. The law of increase of entropy

If a closed system is not in a state of statistical equilibrium, its macroscopic

state will vary in time, until ultimately the system reaches a state of complete

equilibrium. If each macroscopic state of the system is described by the distri-

bution of energy between the various subsystems, we can say that the sequence

of states successively traversed by the system corresponds to more and more

probable distributions of energy. This increase in probability is in general very

considerable, because it is exponential, as shown in §7. We have seen that the

probability is given by es , the exponent being an additive quantity, the en-

tropy of the system. We can therefore say that the processes occurring in a non-

equilibrium closed system do so in such a way that the system continually pas-

ses from states of lower to those of higher entropy until finally the entropy

reaches the maximum possible value, corresponding to complete statistical

equilibrium.

Thus, if a closed system is at some instant in a non-equilibrium macroscopic

state, the most probable consequence at later instants is a steady increase in

the entropy of the system. This is the law of increase of entropy or second law
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of thermodynamics, discovered by Clausius; its statistical explanation was
given by Boltzmann.

In speaking of the "most probable" consequence, we must remember that

in reality the probability of transition to states of higher entropy is so enor-

mous in comparison with that of any appreciable decrease in entropy that in

practice the latter can never be observed in Nature. Ignoring decreases in en-

tropy due to negligible fluctuations, we can therefore formulate the law of in-

crease of entropy as follows : if at some instant the entropy of a closed system

does not have its maximum value, then at subsequent instants the entropy

will not decrease ; it will increase or at least remain constant.

There is no doubt that the foregoing simple formulations accord with real-

ity; they are confirmed by all our everyday observations. But when we con-

sider more closely the problem of the physical nature and origin of these laws

of behaviour, substantial difficulties arise, which to some extent have not

yet been overcome.

Firstly, if we attempt to apply statistical physics to the entire Universe, re-

garded as a single closed system, we immediately encounter a glaring contra-

diction between theory and experiment. According to the results of statistics,

the universe ought to be in a state of complete statistical equilibrium. More
precisely, any finite region of it, however large, should have a finite relaxation

time and should be in equilibrium. Everyday experience shows us, however,

that the properties of Nature bear no resemblance to those of an equilibrium

system; and astronomical results show that the same is true throughout the

vast region of the Universe accessible to our observation.

We might try to overcome this contradiction by supposing that the part of

the Universe which we observe is just some huge fluctuation in a system which

is in equilibrium as a whole. The fact that we have been able to observe this

huge fluctuation might be explained by supposing that the existence of such a

fluctuation is a necessary condition for the existence of an observer (a condition

for the occurrence of biological evolution). This argument, however, is easily

disproved, since a fluctuation within, say, the volume of the solar system only

would be very much more probable, and would be sufficient to allow the

existence of an observer.

The escape from this contradiction is to be sought in the general theory of

relativity. The reason is that, when large regions of the Universe are consider-

ed, the gravitational fields present become important. According to the gen-

eral theory of relativity, these fields are just a change in the space-time metric,

described by the metric tensor gik . When the statistical properties of bodies are

discussed, the metric properties of space-time may in a sense be regarded as

"external conditions" to which the bodies are subject. The statement that a
closed system must, over a sufficiently long time, reach a state of equilibrium,

applies of course only to a system in steady external conditions. The metric
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tensor gik is in general a function not only of the co-ordinates but also of time,

so that the "external conditions" are by no means steady in this case. Here it

is important that the gravitational field cannot itself be included in a closed

system, since the conservation laws which are, as we have seen, the foundation

of statistical physics would then reduce to identities. For this reason, in the

general theory of relativity, the Universe as a whole must be regarded not as a

closed system but as a system in a variable gravitational field. Consequently

the application of the law of increase of entropy does not prove that statistical

equilibrium must necessarily exist.

Thus this aspect of the problem of the Universe as a whole indicates the

physical basis of the apparent contradictions. There are, however, other diffi-

culties in understanding the physical nature of the law of increase of entropy.

Classical mechanics itself is entirely symmetrical with respect to the two

directions of time. The equations of mechanics remain unaltered when the

time / is replaced by - t\ if these equations allow any particular motion, they

will therefore allow the reverse motion, in which the mechanical system pas-

ses through the same configurations in the reverse order. This symmetry must

naturally be preserved in a statistics based on classical mechanics. Hence, if

any particular process is possible which is accompanied by an increase in the

entropy of a closed macroscopic system, the reverse process must also be pos-

sible, in which the entropy of the system decreases. The formulation of the

law of increase of entropy given above does not itself contradict this symmetry,

since it refers only to the most probable consequence of a macroscopically

described state. In other words, if some non-equilibrium macroscopic state is

given, the law of increase of entropy asserts only that, out of all the microscop-

ic states which meet the given macroscopic description, the great majority

lead to an increase of entropy at subsequent instants.

A contradiction arises, however, if we look at another aspect of the prob-

lem. In formulating the law of increase of entropy, we have referred to the

most probable consequence of a macroscopic state given at some instant. But

this state must itself have resulted from some other states by means of proces-

ses occurring in Nature. The symmetry with respect to the two directions of

time means that, in any macroscopic state arbitrarily selected at some instant

t = t0y we can say not only that much the most probable consequence at

t > to is an increase in entropy, but also that much the most probable origin of

the state was from states of greater entropy; that is, the presence of a minimum

of entropy as a function of time at the arbitrarily chosen instant t = t is much

the most probable.

This assertion, of course, is not at all equivalent to the law of increase of

entropy, according to which the entropy never decreases (apart from entirely

negligible fluctuations) in any closed systems which actually occur in Nature.

And it is precisely this general formulation of the law of increase of entropy
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which is confirmed by all natural phenomena. It must be emphasised that it is

certainly not equivalent to the formulation given at the beginning of this

section, as it might appear to be. In order to derive one formulation from the

other, it would be necessary to use the concept of an observer who artificially

"creates" a closed system at some instant, so that the problem of its previous

behaviour does not arise. Such a dependence of the laws of physics on the

nature of an observer is quite inadmissible, of course.

At the present time it is not certain whether the law of increase of entropy

thus formulated can be derived on the basis of classical mechanics. It may be

noted that, because the equations of classical mechanics are invariant under

time reversal, we can consider only the deduction that the entropy varies mo-

notonically. In order to derive a law of monotonic increase, we should have

to define the future as the direction oftime in which the entropy increases, and

the problem would then arise of proving that this definition of the future and

the past is the same as the definition used in quantum mechanics (see below).

It is more reasonable to suppose that the law of increase of entropy in the

above general formulation arises from quantum effects.

The fundamental equation of quantum mechanics, namely Schrodinger's

equation, is itself symmetrical under time reversal, provided that the wave

functionW is also replaced by W*. This means that, if at some instant t = t\ the

wave functionW= ^(fi) is given, and if according to Schrodinger's equation

it should become ^f2) at some other instant t%, then the change from W(t{) to

^(^2) is reversible; in other words, ifW = W*{tz) at the initial instant ti, then

y = ¥*(h) at t2 .

However, despite this symmetry, quantum mechanics does in fact involve an

important non-equivalence of the two directions of time. This appears in con-

nection with the interaction of a quantum object with a system which with

sufficient accuracy obeys the laws of classical mechanics, a process of funda-

mental significance in quantum mechanics. If two interactions A and B with

a given quantum object occur in succession, then the statement that the pro-

bability of any particular result of process B is determined by the result of

process A can be valid only if process A occurred earlier than process B?
Thus in quantum mechanics there is a physical non-equivalence of the two

directions of time, and the "macroscopic" expression of this may in fact be the

law of increase of entropy. Up to the present, however, this relation has not

been at all convincingly shown to exist in reality. If this is indeed the origin

of the law of increase of entropy, there must exist an inequality involving the

quantum constant h which ensures the validity of the law and is satisfied in

the real world (and probably satisfied by a very wide margin).

Summarising, we may repeat the general formulation of the law of increase

of entropy: in all closed systems which occur in Nature, the entropy never

t See also Quantum Mechanics, §7.
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decreases; it increases, or at least remains constant. In accordance with these

two possibilities, all processes involving macroscopic bodies are customarily

divided into irreversible and reversible processes. The former comprise those

which are accompanied by an increase of entropy of the whole closed system;

the reverse processes cannot occur, since the entropy would then have to

decrease. Reversible processes are those in which the entropy of the closed

system remains constant*, and which can therefore take place in the reverse

direction. A strictly reversible process is, of course, an ideal limiting case;

processes actually occurring in Nature can be reversible only to within a cer-

tain degree of approximation.

t It must be emphasised that the entropies of the individual parts of the system need not

remain constant also.



CHAPTER II

THERMODYNAMIC QUANTITIES

§9. Temperature

Thermodynamic physical quantities are those which describe macroscopic

states of bodies. They include some which have both a thermodynamic and a

purely mechanical significance, such as energy and volume. There are also,

however, quantities of another kind, which appear as a result of purely

statistical laws and have no meaning when applied to non-macroscopic

systems, for example entropy.

In what follows we shall define a number of relations between thermo-

dynamic quantities which hold good whatever the particular bodies to which

these quantities relate. These are called thermodynamic relations.

When thermodynamic quantities are discussed, the negligible fluctuations

to which they are subject are usually of no interest. Accordingly, we shall

entirely ignore such fluctuations, and regard the thermodynamic quantities as

varying only with the macroscopic state of the body.*

Let us consider two bodies in thermal equilibrium with each other, forming

a closed system. Then the entropy S of this system has its maximum value

(for a given energy E of the system). The energy E is the sum of the energies

Ei and E2 of the two bodies: E = £"i+£2 . The same applies to the entropy S

of the system, and the entropy of each body is a function of its energy:

S = 5i(£i) +£*(£«)• Since E* = E-EXi E being a constant, S is really a

function of one independent variable, and the necessary condition for a

maximum may be written

dS__ dSi dS2 dE2

d^j " dEi
+ dE2 d£i

_ dSi dS2 _ Q~ dEx dE2
~ '

whence

dSi/d£i = dS2/dE2 .

This conclusion can easily be generalised to any number of bodies in equi-

librium with one another.

t Fluctuations of thermodynamic quantities will be discussed in a separate chapter

(Chapter XII).

33
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Thus, if a system is in a state of thermodynamic equilibrium, the derivative

of the entropy with respect to the energy is the same for every part of it, i.e.

is constant throughout the system. A quantity which is the reciprocal of the

derivative of the entropy S of a body with respect to its energy E is called

the absolute temperature T {or simply the temperature) of the body:

dS/dE=l/T.. (9.1)

The temperatures of bodies in equilibrium with one another are therefore

equal: Tx = T2 .

Like the entropy, the temperature is seen to be a purely statistical quantity,

which has meaning only for macroscopic bodies.

Let us next consider two bodies forming a closed system but not in equi-

librium with each other. Their temperatures 7\ and T2 are then different.

In the course of time, equilibrium will be established between the bodies,

tand their temperatures will gradually become equal. During this process,

heir total entropy S = Si+

S

2 must increase, i.e. its time derivative is posi-

tive:

dS _ dfh dS^

dt ~ At dt

_ dSx d£i dSa dEz
~ d^~dT+ d^~dr

>

Since the total energy is conserved, dEi/dt+dE2/dt = 0, and so

dS _ /dSi dS2\ d£i _ /_1 1_\ dEi

~dt
~ [dlh ~dE2) ~df

~ \J\ T2)~dF
>

'

Let the temperature of the second body be greater than that of the first

(T2 > Ti). Then dEi/dt > 0, and dE2/dt < 0. In other words, the energy

of the second body decreases and that of the first increases. This property

of the temperature may be formulated as follows : energy passes from bodies

at higher temperature to bodies at lower temperature.

The entropy S is a dimensionless quantity. The definition (9.1) therefore

shows that the temperature has the dimensions of energy, and so can be

measured in energy units, for example ergs. In ordinary circumstances,

however, the erg is too large a quantity, and in practice the temperature is

customarily measured in its own units, called degrees Kelvin or simply degrees.

The conversion factor between ergs and degrees, i.e. the number of ergs

per degree, is called Boltzmanri's constant and is usually denoted by k; its

value is*

k = 1.38X10-16 erg/deg.

tFor reference, we may also give the conversion coefficient between degrees and electron-
volts:

leV= 1 1,606 deg.
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In all subsequent formulae the temperature will be assumed measured in

energy units. To convert to the temperature measured in degrees, in numerical

calculations, we need only replace T by kT. The continual use of the factor k,

whose only purpose is to indicate the conventional units of temperature

measurement, would merely complicate the formulae.

If the temperature is in degrees, the factor k is usually included in the

definition of entropy

:

S = k\ogAr, (9.2)

instead of (7.7), in order to avoid the appearance of k in the general relations

of thermodynamics. Then formula (9.1) defining the temperature, and there-

fore all the general thermodynamic relations derived subsequently in this

chapter, are unaffected by the change to degrees.

Thus the rule for conversion to degrees is to substitute in all formulae

T - kT, S -+ S/k. (9.3)

§10. Macroscopic motion

As distinct from the microscopic motion of molecules, the macroscopic

motion is that in which the various macroscopic parts of a body participate as

a whole. Let us consider the possibility of macroscopic motion in a state of

thermodynamic equilibrium.

Let the body be divided into a large number of small (but macroscopic)

parts, and let Ma , Ea and Pa denote the mass, energy and momentum of the

a\h part. The entropy Sa of each part is a function of its internal energy,

i.e. the difference between its total energy Ea and the kinetic energy P\\2Ma
of its macroscopic motion.* The total entropy of the body can therefore be

written

S = YJ
Sa(Ea-PH2Ma). (10.1)

a

We shall assume that the body is a closed system. Then its total momentum
and angular momentum are conserved, as well as its energy:

£Pa = constant, XraXPa= constant, (10.2)
a a

where ra is the radius vector of the ath part. In a state of equilibrium, the

total entropy S of the body as a function of the momenta Pa has a maximum
subject to the conditions (10.2). Using the familiar Lagrange's method of

undetermined multipliers, we find the necessary conditions for a maximum

t The fact that the entropy of a body is a function only of its internal energy follows at

once from Galileo's relativity principle; the number of quantum states, and therefore

the statistical weight (whose logarithm is the entropy), must be the same in all inertial

frames of reference, and in particular that in which the body is at rest.
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by equating to zero the derivatives with respect to Pa of the sum

£{Sa+a.Pa + b.raXPa}, (10.3)
a

where a and b are constant vectors. Differentiation of Sa with respect to Pa

gives1", by the definition of the temperature,

_A_s If *L-\ = ?k_ - _^l
8Pa

°ap 2Ma ) MaT~ T'

where va = Pa/Afa is the velocity of the ath part of the body. Differentiation

of (10.3) therefore gives

-va/r+a+bXra = 0,

or

va = u+QXra , (10.4)

where u = Ta and Q = 7b are constant vectors.

This result has a simple physical significance. If the velocities of all the

parts of a body are given by formula (10.4) with the same u and/?, this means
that we have a translational motion of the body as a whole with constant

velocity u and a rotation of the body as a whole with constant angular

velocity Q. Thus we arrive at the important result that in thermodynamic
equilibrium a closed system can execute only a uniform translational and
rotational motion as a whole. No internal macroscopic motion is possible in

a state of equilibrium.

In what follows we shall usually consider bodies at rest, and the energy

E will accordingly be the internal energy of the body.

So far we have made use only of the necessary condition for a maximum
of entropy as a function of the momenta, but not of the sufficient condition to

be imposed on the second derivatives. It is easy to see that the latter condition

leads to the very important result that the temperature must be positive:

T > 0.J To deduce this, it is not in fact necessary to calculate the second

derivatives; instead, we can argue as follows.

Let us consider a body forming a closed system, at rest as a whole. If the

temperature were negative, the entropy would increase with decreasing argu-

ment. Since the entropy tends to increase, the body would spontaneously

seek to break up into dispersing parts (with total momentum £Pa
= 0),

so that the argument of each Sa in the sum (10.1) should take its least possible

value. In other words, bodies in equilibrium could not exist with T < 0.

t The derivative with respect to a vector is to be understood as another vector whose
components are equal to the derivatives with respect to the components of the first vector.

t The temperature T = (absolute zero) corresponds to -273.15 °C.
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The following point should be noted, however. Although the temperature

of a body or any part of it can never be negative, there may exist incomplete

equilibria in which the temperature corresponding to a particular group of

degrees of freedom of the body is negative. This is further discussed in §71.

§11. Adiabatic processes

Among the various kinds of external interactions to which a body is

subject, those which consist in a change in the external conditions form a

special group. By "external conditions" we mean in a wide sense various

external fields. In practice the external conditions are most often determined

by the fact that the body must have a prescribed volume. In one sense this

case may also be regarded as a particular type of external field, since the walls

which limit the volume are equivalent in effect to a potential barrier which

prevents the molecules in the body from escaping.

If the body is subject to no interactions other than changes in external

conditions, it is said to be thermally isolated. It must be emphasised that,

although a thermally isolated body does not interact directly with any other

bodies, it is not in general a closed system, and its energy may vary with

time.

In a purely mechanical way, a thermally isolated body differs from a

closed system only in that its Hamiltonian (the energy) depends explicitly

on the time : E = E(p, q, t), because of the variable external field. If the

body also interacted directly with other bodies, it would have no Hamiltonian

of its own, since the interaction would depend not only on the co-ordinates

of the molecules of the body in question but also on those of the molecules in

the other bodies.

This leads to the result that the law of increase of entropy is valid not

only for closed systems but also for a thermally isolated body, since here

we regard the external field as a completely specified function of co-ordinates

and time, and in particular neglect the reaction of the body on the field.

That is, the field is a purely mechanical and not a statistical object, whose

entropy can in this sense be taken as zero. This proves the foregoing statement.

Let us suppose that a body is thermally isolated, and is subject to external

conditions which vary sufficiently slowly. Such a process is said to be adiabatic.

We shall show that, in an adiabatic process, the entropy of the body remains

unchanged, i.e. the process is reversible.

We shall describe the external conditions by certain parameters which

are given functions of time. For example, suppose that there is only one

such parameter, which we denote by X. The time derivative dSfdt of the

entropy will depend in some manner on the rate of variation dk/dt of the

parameter h Since dXjdt is small, we can expand dSjdt in powers of dX/dt.
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The zero-order term in this expansion, which does not involve dX/dt, is zero,

since if dX/dt = then dS/dt = also, because the entropy of a closed system

in thermodynamic equilibrium must remain constant under constant external

conditions. The first-order term, which is proportional to dX/dt, must also

be zero, since this term changes sign with dX/dt, whereas dS/dt is always

positive, according to the law of increase of entropy. Hence it follows that

the expansion of dS/dt begins with the second-order term, i.e. for small

dX/dt we have

dS/dt = A(dX/dt)\

or

dS/dX = A dX/dt.

Thus, when dX/dt tends to zero, so does dS/dX, which proves that the adia-

batic process is reversible.

It must be emphasised that, although an adiabatic process is reversible,

not every reversible process is adiabatic. The condition for a process to be

reversible requires only that the total entropy of the whole of a closed system

be constant, while the entropies of its individual parts may either increase

or decrease. In an adiabatic process, a stronger condition holds: the entropy

of a body which is only a part of a closed system also remains constant.

We have defined an adiabatic process as one which is sufficiently slow.

More precisely, we can say that the external conditions must change so slowly

that at any instant the body may be regarded as being in a state of equilibrium

corresponding to the prevailing external conditions. That is, the process

must be slow in comparison with the processes leading to the establishment of

equilibrium in the body concerned. 1
"

We may derive a formula to calculate by a purely thermodynamic method

various mean values. To do so, we assume that a body undergoes an adiabatic

process, and determine the time derivative dE/dt of its energy. By definition,

the thermodynamic energy is

E = E(p, q; X),

where E(p, g; X) is the Hamiltonian of the body, depending on X as a para-

meter. We know from mechanics that the total time derivative of the

t In practice this may be a very weak condition, so that the "slow" adiabatic process may
be quite a "fast" one. For example, in the expansion of a gas, say in a cylinder with a

piston moving outwards, the speed of the piston need be small only compared with the

velocity of sound in the gas, i.e. it may in practice be very large.

In general textbooks on physics an adiabatic expansion (or compression) is often defined

as one which is "sufficiently rapid". This refers to a different aspect of the problem: the

process must occur so rapidly that the body cannot exchange heat with the surrounding

medium. Thus the condition in question is one which will in practice ensure that the body
is thermally isolated, and the condition of slowness compared with processes leading to

the establishment of equilibrium is tacitly assumed satisfied.
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Hamiltonian is equal to its partial time derivative*

:

dE(p, q; A) _ dE(p, q; A)

dt dt

In the present case E(p, q; A) depends explicitly on the time through A(f), and

we can therefore write

dE(p, q; X) _ dE(p, q; A) dA

dt 8A dt
'

Since the operations of averaging over the statistical distribution and differ-

entiating with respect to time can clearly be interchanged, we have

dE _ dE(p, q; X) _ dE(p, q; X) dA

dt
~

dt 8A dt
' K }

the derivative dX/dt is a given function of time, and can be taken outside the

averaging.

It is very important that, since the process is adiabatic, the mean value of

the derivative dE(p, q; X)/dX in (11.1) can be taken as the mean value over

the statistical distribution corresponding to equilibrium for a given value of

the parameter X, i.e. for the external conditions prevailing at a given instant.

The derivative dE/dt can also be written in another form by regarding the

thermodynamic quantity £asa function of the entropy S of the body and

the external parameters A. Since, in an adiabatic process, the entropy S re-

mains constant, we have

dE /dE\ dX /f1 „ x

d7
=

(8A)
s
d7'

<1L2>

where the subscript to the parenthesis indicates that the derivative is taken

for constant S.

Comparison of (11.1) and (11.2) shows that

3A
= \M)

S

- (
'

This is the required formula. It enables us to calculate thermodynamically

the mean values (over the equilibrium statistical distribution) of quantities of

the form dE(p, q; A)/9A. Such quantities are continually encountered when

studying the properties of macroscopic bodies, and in consequence formula

(1 1.3) is of great importance in statistical physics. It appears in the calculation

of various forces acting on a body (the parameters A being the co-ordinates of

t See Mechanics, §40.
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a particular part of the body; see §12), the calculation of the magnetic or

electric moment of bodies (the parameters X being the magnetic or electric

field strengths), and so on.

The arguments given here for classical mechanics are entirely applicable to

the quantum theory, except that the energy E(p, g; A) must be everywhere

replaced by the Hamiltonian operator H. Then formula (11.3) becomes

9A ~
V

s

ih ^
the bar denoting complete statistical averaging (which automatically includes

the quantum averaging).

§12. Pressure

The energy E of a body, as a thermodynamic quantity, has the property of

being additive : the energy of the body is equal to the sum of the energies of

its individual (macroscopic) parts.1" Another fundamental thermodynamic

quantity, the entropy, also has this property.

The additivity of the energy and the entropy leads to the following very

important result. If a body is in thermal equilibrium, we can say that, for a

given energy, the entropy depends only on the volume of the body, and not

on its shape; the same is true of the energy for a given entropy, t For a change

in the shape of the body can be regarded as a rearrangement of its individual

parts, and so the entropy and energy, being additive, will remain unchanged.

Here, of course, it is assumed that the body is not in an external field of force,

so that the motion of the parts of the body in space does not involve a change

in their energy.

Thus the macroscopic state of a body at rest in equilibrium is entirely

determined by only two quantities, for example the volume and the energy.

All other thermodynamic quantities can be expressed as functions of these

two. Ofcourse, because ofthis mutual dependence ofthe various thermodynam-
ic quantities, any other pair could be regarded as the independent variables.

Let us now calculate the force exerted by a body on the surface bounding

its volume. According to the formulae of mechanics, the force acting on a

t Insofar as we neglect the energy of interaction of these parts; this is not permissible if

we are interested in effects arising from the presence of interfaces between different bodies.

Chapter XV deals with this topic.

t It should be mentioned that these statements are applicable in practice to liquids and
gases but not to solids. A change in shape (deformation) of a solid involves the doing of

work, so that the energy of the body is changed. This is because the deformed state of the

solid is, strictly speaking, an incomplete thermodynamic equilibrium (but the relaxation

time for the establishment of complete equilibrium is so long that in many respects the

deformed body behaves as if in equilibrium).



§12 Pressure 41

surface element ds is

F= -9£(p,?;r)/8r,

where E(p, q;r) is the energy of the body as a function of the co-ordinates

and momenta of its particles and of the radius vector of the surface element

considered, which here acts as an external parameter. Averaging this equation

and using formula (11.3), we obtain

F = _pE(p,q;r)»,g;r) _ _(*E\ = JdE) dV
dr \drJs \dVJs dr'

where Fis the volume. Since the change in volume is ds«dr, we have dV/dr =

ds, the surface element, and so

F= -(dE/dV)s ds.

Hence we see that the mean force on a surface element is normal to the ele-

ment and proportional to its area (Pascal's law). The magnitude of the force

per unit area is

P = -(dE/dV)s . (12.1)

This quantity is called the pressure.

In defining the temperature by formula (9.1) we were essentially consider-

ing a body which is not in direct contact with any other bodies, and in

particular is not surrounded by any external medium. Under these conditions

it was possible to speak of the change in energy and entropy of the body

without making more specific the nature of the process. In the general case

of a body in an external medium, or surrounded by the walls of a vessel,

formula (9.1) must be made more precise. For if during the process the

volume of the body changes, this will necessarily affect the state of the bodies

in contact with it, and in order to define the temperature we should have to

take into consideration at the same time all the bodies in contact (for example,

both the body in question and the vessel containing it). If it is desired to

define the temperature in terms of thermodynamic quantities for the given

body only, its volume must be regarded as constant. In other words, the

temperature is defined as the derivative of the energy of the body with respect

to its entropy, taken at constant volume

:

T = (dE/dS)v . (12.2)

The equations (12.1), (12.2) can also be written together as a relation be-

tween differentials

:

dE= TdS-PdV. (12.3)

This is one of the most important relations in thermodynamics.
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The pressures of bodies in equilibrium with one another are equal. This

follows immediately from the fact that thermal equilibrium necessarily pre-

supposes mechanical equilibrium; in other words, the forces exerted on each

other by any two of these bodies at their surface of contact must be equal in

magnitude and opposite in direction, and thus balance.

The equality of pressures in equilibrium can also be derived from the con-

dition of maximum entropy, in the same way as the equality of temperatures

was shown in §9. To do this, we consider two parts, in contact, of a closed

system in equilibrium. One necessary condition for the entropy to be a maxi-

mum is that it should be a maximum with respect to a change in the volumes

V\ and V2 of these two parts when the states of the other parts undergo no

change (this means, in particular, that V\+V2 remains constant). If the

entropies of the two parts are Si and £2, we have

_dS^_dS± dS2 dV2 _ dSx dS2 _

From the relation (12.3) in the form

dS = ±dE+jdV

it is seen that dS/dV = P/T, and so Pi/Ti = P2/T2 . Since the temperatures

7i and T2 are the same in equilibrium, we therefore find that the pressures

are equal, Pi = P2 .

It must be remembered that, when thermal equilibrium is established, the

equality of pressures (i.e. mechanical equilibrium) is reached much more

rapidly than that of temperatures, and so cases are often met with in which

the pressure is constant throughout a body but the temperature is not. The

reason is that the non-constancy of pressure is due to the presence of uncom-

pensated forces ; these bring about macroscopic motion so as to equalise the

pressure much more rapidly than the equalisation of temperature, which does

not involve macroscopic motion.

It is easy to see that the pressure must be positive in any equilibrium state

:

when P > we have (dS/d V)E > 0, and the entropy could increase only by

an expansion of the body, which is prevented by the surrounding bodies.

If P < 0, however, then we should have (dS/d V)E < 0, and the body would

spontaneously contract so as to increase its entropy.

There is, however, an important difference between the requirements of

positive temperature and positive pressure. Bodies of negative temperature

would be completely unstable and cannot exist in Nature. States (non-

equilibrium) of negative pressure can exist in Nature with restricted stability.

The reason is that the spontaneous contraction of the body involves
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"detaching" it from the walls of the vessel or the formation of cavities within

it, that is, the formation of a new surface, and this leads to the possibility

of the existence of negative pressures in what are called metastable states?

§13. Work and quantity of heat

The external forces applied to a body can do work on it, which is deter-

mined, according to the general rules of mechanics, by the products of these

forces and the displacements which they cause. This work may serve to

bring the body into a state of macroscopic motion (or in general to change

its kinetic energy), or to move the body in an external field (for instance, to

raise it against gravity). We shall, however, be mainly interested in cases

where the volume of a body is changed as a result of work done on it (i.e. the

external forces compress the body but leave it at rest as a whole).

We shall everywhere regard as positive an amount of work R done on a

given body by external forces. Negative work (R < 0) will correspondingly

mean that the body itself does work (equal to \R\) on some external objects

(for example, in expanding).

Bearing in mind that the force per unit area of the surface of the body is

the pressure, and that the product of the area of a surface element and its

displacement is the volume swept out by it, we find that the work done on

the body per unit time when its volume changes is

dR/dt = -PdV/dt; (13.1)

in compression, dV/dt < 0, so that dR/dt > 0. This formula is applicable

to both reversible and irreversible processes; only one condition need be

satisfied, namely that throughout the process the body must be in a state of

mechanical equilibrium, i.e. at each instant the pressure must be constant

throughout the body.

If the body is thermally isolated, the whole of the change in its energy is

due to the work done on it. In the general case of a body not thermally iso-

lated, in addition to the work done, the body gains or loses energy by direct

transfer from or to other bodies in contact with it. This part of the change in

energy is called the quantity of heat Q gained or lost by the body. Thus the

change in the energy of the body per unit time may be written

£ = £+^. (13.2)
dt dt dt

v '

Like the work, the heat will be regarded as positive if gained by the body

from external sources.

iThese are defined in §21. Negative pressures are further discussed in §83.
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The energy E in (13.2) must, in general, be understood as the total energy

of the body, including the kinetic energy of its macroscopic motion. We shall,

however, usually consider the work corresponding to the change in volume

of a body at rest, in which case the energy reduces to the internal energy of the

body.

Under conditions where the work is defined by formula (13.1), we have for

the quantity of heat

%=%.+?%. (13.3)
dt dt dt

Let us assume that at every instant throughout the process the body may be

regarded as being in a state of thermal equilibrium corresponding to its

energy and volume at that instant; it must be emphasised that this does not

mean that the process is necessarily reversible, since the body may not be in

equilibrium with surrounding bodies. Then, from the relation (12.3), which

gives the differential of the function E(S, V), the energy of the body in the

equilibrium state, we can put

dE _ r
d^_

p
dF

dt ~ dt dt'

Comparison with (13.3) shows that

dQ/dt = TdS/dt. (13.4)

The work dR and the quantity of heat dQ gained by the body in an infini-

tesimal change of state are not the total differentials of any quantities."'' Only

the sum dQ+dR, i.e. the change in energy dE, is a total differential. We can

therefore speak of the energy E in a given state, but not, for example, of the

quantity of heat which a body possesses in a given state. In other words, the

energy of the body cannot be divided into thermal and mechanical parts; this

is possible only when considering the change in energy. The change in energy

when a body goes from one state to another can be divided into the quantity

of heat gained or lost by the body and the work done on it or by it. This

division is not uniquely determined by the initial and final states of the body,

but depends also on the nature of the process itself. That is, the work and the

quantity of heat are functions of the process undergone by the body and

not only of its initial and final states. This is seen particularly when the body

undergoes a cyclic process, starting and finishing in the same state. The

change in energy is then zero, but the body may gain or lose a quantity of

heat or work. Mathematically this corresponds to the fact that the integral

of the total differential dE around a closed circuit is zero, but the integral

of dQ or dR, which are not total differentials, is not zero.

t In this sense the notation dR and dQ is not quite precise, and we therefore avoid it as

far as possible.
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The quantity of heat which must be gained in order to raise the tempera-

ture of the body by one unit (for example, one degree) is called its specific

heat. This clearly depends on the conditions under which the heating takes

place. A distinction is usually made between the specific heat at constant

volume Cv and that at constant pressure Cp . Clearly

Cv
= T(dSldT)v> (13.5)

Cp = T(dS/dT)P . (13.6)

Let us consider cases where formula (13.4) for the quantity of heat is in-

applicable, but at the same time it is possible to establish certain inequalities

for this quantity. There exist processes in which the body is not in thermal

equilibrium, although the temperature (and pressure) are constant throughout

the body; for example, chemical reactions in a homogeneous mixture of

reactants. Owing to the irreversible process (the chemical reaction) occurring

in the body, its entropy increases independently of the heat gained, and so we

can say that the inequality

dQ/dt < T dS/dt (13.7)

holds.

Another case where a similar inequality can be stated is an irreversible

process in which the body goes from one equilibrium state to another neigh-

bouring one but is not in equilibrium during the process.1 Then the inequality

dQ < T6S (13.8)

holds between the quantity of heat dQ gained by the body in this process and

its entropy change dS.

§14. The heat function

If the volume of a body remains constant during a process, then dQ = dE,

i.e. the quantity of heat gained by the body is equal to the change in its

energy. If the process occurs at constant pressure, the quantity of heat can

be written as the differential

dQ = d(E+PV) = dW (14.1)

of a quantity

W = E+PV, (14.2)

called the heat function of the body.* The change in the heat function in

processes occurring at constant pressure is therefore equal to the quantity of

heat gained by the body.

t An example is the Joule-Thomson process (see §18) with a small change in pressure.

t Also called the enthalpy or heat content.
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It is easy to find an expression for the total differential of the heat function.

Putting dE = TdS-P dV and dW = dE+P dV+V dP, we have

dW=TdS+VdP. (14.3)

From this it follows that

T = (8 WjdS)P , V=(d W/dP)s . (14.4)

If the body is thermally isolated (which, it will be remembered, does not

imply that it is a closed system), dg = 0, and (14.1) shows that, in processes

occurring at constant pressure and involving a thermally isolated body,

W = constant, (14.5)

i.e. the heat function is conserved.

The specific heat C
v
can be written, using the relation dE = TdS—PdV,

as

C, = (dE/dT)v . (14.6)

Similarly, we have for the specific heat C
p

Cp = (dW/dT)P .

Thus we see that at constant pressure the heat function has properties similar

to those of the energy at constant volume.

§15. The free energy and the thermodynamic potential

The work done on a body in an infinitesimal isothermal reversible change of

state can be written as a differential

:

dR = dE-dQ = dE-TdS
= d(E-TS)

or

dR = dF, (15.1)

where

F=E-TS (15.2)

is another function of the state of the body, called the free energy. Thus the

work done on the body in a reversible isothermal process is equal to the

change in its free energy.

Let us find the differential of the free energy. Substituting dE — T dS—
P d

V

and dF = dE-TdS-S dT, we have

dF= -SdT-PdV. (15.3)

Hence it is evident that

S = -(dF/dT)v , P = -(dF/dV)T . (15.4)
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U sing the relation E ~ F+ TS, we can express the energy in terms of the free

energy as

E= F- T(dF/dT)v

Formulae (12.1), (12.2), (14.4) and (15.4) show that, if we know any of the

quantities E, W and F as a function of the corresponding two variables and

take its partial derivatives, we can determine all the remaining thermodynamic

quantities. For this reason E, W and F are sometimes called thermodynamic

potentials (by analogy with the mechanical potential) or characteristic func-

tions', the energyE with respect to the variables S, V; the heat function W with

respect to S, P; the free energy Fwith respect to V, T.

We still lack a thermodynamic potential with respect to the variables P, T.

To derive this we substitute in (15.3)PdF = d(PV)- VdP, take d(PV) to the

left-hand side of the equation, and obtain

d0 = -SdT+VdP, (15.6)

with a new quantity

= E-TS+PV
= F+PV
= W-TS, (15.7)

called the thermodynamic potential (in a restricted sense of the term).'

From (15.6) we clearly have

S = -(d&/dT)P, V = (d0/dP)T . (15.8)

T he heat function is expressed in terms of in the same way as E in terms

ofF:

W = 0-T(d0/dT)P

= - r2
(e4*)p

- (15 -9)

If there are other parameters X
t
besides the volume which define the state of

the system, the expression for the differential of the energy must be augmented

by terms proportional to the differentials dk
{

:

dE = TdS-PdV+^Aidli, (15.10)
i

where the A
i
are some functions of the state of the body. Since the transforma-

tion to other potentials does not affect the variables X
t
, it is clear that similar

t In Western literature, the functions FandcP are often called respectively the Helmholtz

free energy and the Gibbs free energy.
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terms will be added to the differentials F, 0, W:

dF = -SdT-PdV+^AidXi,
i

etc. Hence the quantities A
i
can be obtained by differentiation with respect to

A
i
of any of these potentials (it must be remembered which other variables

are treated as constant in the differentiation). Using also formula (11.3), we
can write down the analogous relation

which expresses the mean value of the derivative of the Hamiltonian with re-

spect to any parameter as the derivative of the free energy with respect to that

parameter (and similar relations involving the derivatives of and W).

The following point may be noted. If the values of the parameters \ change

slightly, the quantities E, F, W and will also undergo small changes. It is

evident that these changes will be equal if each is considered for the appropri-

ate pair of constant quantities

:

(dE)StV = (dF)TtV = (6W)StP = (mT,p. (15.12)

The free energy and the thermodynamic potential have a very important

property which determines the direction in which they change in various

irreversible processes. From the inequality (13.7), substituting dQ/dt from

(13.3), we obtain

dT
+P

dF
<r

d7-
(lfU3)

Let us assume that the process is isothermal and occurs at constant volume

(T = constant, V = constant). Then this inequality may be written

M> = ^0. (15,4)

Thus irreversible processes occurring at constant temperature and constant

volume are accompanied by a decrease in the free energy of the body.

Similarly, for P = constant and T = constant the inequality (15.13) be-

comes

d0jdt < 0; (15.15)

that is, irreversible processes occurring at constant temperature and constant

pressure are accompanied by a decrease in the thermodynamic potential.1

t It should be remembered that in both cases the processes in question are those (such

as chemical reactions) for which the body is not in equilibrium, so that its state is not uni-

quely defined by the temperature and the volume (or pressure).
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Correspondingly, in a state of thermal equilibrium the free energy and the

thermodynamic potential have minimum values, the former with respect to all

changes of state with Tand V constant, and the latter with respect to changes

of state with T and P constant.

PROBLEM
How can the mean kinetic energy of the particles in a body be calculated if the formula

for its free energy is known ?

Solution. The Hamiltonian function (or, in the quantum case, the Hamiltonian opera-

tor) may be written in the form E(p, q) = U(q)+K(p), where U(q) is the potential energy

of interaction of the particles in the body, and K(p) their kinetic energy. The latter is a

quadratic function of the momenta, inversely proportional to the particle mass m (for a

body consisting of identical particles). Regarding m as a parameter, we can therefore write

oE(pg;m) = _J_
am m

Then, applying formula (15.11), we obtain the mean kinetic energy K = K(p):

K= -m(dF/dm)Tt v .

§16. Relations between the derivatives of thermodynamic quantities

In practice the most convenient, and the most widely used, pairs of thermo-

dynamic variables are T, V and T, P. It is therefore necessary to transform

various derivatives of the thermodynamic quantities with respect to one

another to different variables, both dependent and independent.

If V and T are used as independent variables, the results of the transforma-

tion can be conveniently expressed in terms of the pressure P and the specific

heat Cv (as functions of V and T). The equation which relates the pressure, vol-

ume and temperature is called the equation of state for a given body. Thus the

purpose of the formulae in this case is to make it possible to calculate various

derivatives of thermodynamic quantities from the equation of state and the

specific heat Cv .

Similarly, when P and T are taken as the basic variables the results of the

transformation should be expressed in terms of V and C
p

(as functions of

P and T).

Here it must be remembered that the dependence of Cv on V or of Cp on P
(but not on the temperature) can itself be determined from the equation of

state. It is easily seen that the derivative (8CJ6 V) T can be transformed so that

it is defined in terms of the function P(V, T). Using the fact that S =

-(dF/dT)v , we have

dVdT dVdT2

82 /dF\= —T
dT2m
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and since (dF/dV) T = — P, we have the required formula

(dCJdV)T = T(d*P/dT*)v . (16.1)

Similarly we find

(dC
p/dP)T = -T(d*V/dT2

)P , (16.2)

formulae (15.8) being used in the calculation.

We shall show how some of the thermodynamic derivatives most often

encountered may be transformed.

The derivatives of the entropy with respect to volume or pressure can be

calculated from the equation of state by means of the following formulae,

which are a direct consequence of the expressions for the differentials of the

thermodynamic quantities. We have

fdS\ 8_ /dF\ _ S /dF\

\dV) T
~ dV\df) v

~ df\dV)
or

Similarly

(dS/d V)T = (dP/dT)v . (16.3)

dPJ T
~ dP \dfj p

~ df [dp) T
or

(dS/dP)T = -(dV/dT)P . (16.4)

The derivative (dE/dV) T is calculated from the equation dE = T dS—P dV
as

or, substituting (16.3),

Similarly we can derive

Finally, we shall show how the specific heat Cv may be calculated from

the specific heat Cp and the equation of state, using T and P as the basic

variables. Since Cv
= T(dS/dT)v , we have to transform the derivative
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(dS/dT)v to different independent variables. A transformation of this type

is most simply effected by the use of Jacobians. 1" We write

Cv
= T(dS/dT)v

= Td(S, V)/d(T, V)

,3(5-, V)Jd(T,P)= T
d(T, V)/d(T, P)

T
(dS/dT)P (d V/dP)T -(dS/dP)T (d V/dT)P

= Cn-T

(dv/dP)T

(dS/dP)T (dV/dT)P
v '

(9F/8P)T

Substituting (16.4), we obtain the required formula:

CP~CV = -T[(dV/dT)Pf/(dV/dP)T . (16.9)

Similarly, transforming C
p
= T(dS/dT)p to the variables T, V, we can

derive the formula

Cp-Cv = -T[(dP/dT)vf!(dPldV)T . (16.10)

The derivative (dP/dV)T is negative: in an isothermal expansion of a body,

its pressure always decreases. This will be rigorously proved in §21. It therefore

follows from (16.10) that for all bodies

CP >CV . (16.11)

In adiabatic expansion (or contraction) of a body its entropy remains con-

stant. The relation between the temperature, volume and pressure of the body

in an adiabatic process is therefore determined by various derivatives taken at

1" The Jacobian 9(«, «)/9(x, y) is defined as the determinant

9(«, v)

8(*,*)
~ du/dx du/dy

dv/dx dv/dy

It clearly has the following properties

:

d(v, ii) 9(w, v)

(I)

d(x, y) d(x, y)

9(«, y) / 9" \

6(x, y)
The following relations also hold:

(II)

(£).

9(h, v) _ 9(«, v) 9(/, s)

9(*, y)
~ 'd&~s)'W7y)'

(IV)

d 9(«, v) _ d(du/dt,v) d(u, dv/dt)

dt 9(x, y) d(x, y) 9(x, y)
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constant entropy. We shall derive formulae whereby these derivatives may be

calculated from the equation of state of the body and its specific heat.

For the derivative of the temperature with respect to volume we have,

changing to independent variables V, T,

dT\ d(T, S) d(T, S)fd(V, T)

(5),- d(v,s) = d(v,S)/d(v,T)

(dS/dV)T
= ~ (dS/dT)y

or, substituting (16.3),

Similarly we find

(S),-i.(S),-

These formulae show that, according as the thermal expansion coefficient

(8 V/dT)p is positive or negative, the temperature of the body falls or rises in

an adiabatic expansion.*

Let us next calculate the adiabatic compressibility (8 V/dP)s of the body,

writing

/dV\ d(V, S) d(V,S)/d(V,T) d(V, T) (dS/dT)v /dV\

[dP) s
= d(P, S) = 8(P, S)/d(P, T) 'd(P, T) = (ds/dT)P [dp) T

The inequality C
p
> Cv

therefore implies that the adiabatic compressibility

is always smaller in absolute value than the isothermal compressibility.

Using formulae (16.9) and (16.10), we can derive from (16.14) the relations

(16.15)
[dp)

s
-[dp) T

+ Cp [{dT)

ffl.-(S),-£[(5»J-

t In §21 it will be shown rigorously that Cv is always positive, and therefore so is Cp
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§17. The thermodynamic scale of temperature

We shall show how a thermodynamic scale of temperature may be con-

structed, at least in principle, using for this purpose an arbitrary body whose
equation of state is not assumed known a priori. The problem is thus to estab-

lish by means of this body the relation T = T(r) between the absolute scale of

temperature T and some purely arbitrary scale r defined by an arbitrarily cal-

ibrated "thermometer".

To do this, we start from the following relation (in which all quantities refer

to the body in question)

:

(dQ/dPh = T(dS/dP)T = -T(dV/dT)P ,

where (16.4) has been used. Since r and Tare in one-to-one relation, it does

not matter whether the derivative is written for constant T or constant r. The
derivative (9 VJdT)p may be written as

(dV\ _ /dV\ dr

[dT) p -[dr)p dT-

Then

or

dlogr_ (dV/dr)P
dr OC/8P)/ K

>

The right-hand side involves quantities which can be measured directly as

functions of the arbitrary temperature r: (dQ/dP)t is the quantity of heat

which must be supplied to the body in order to maintain its temperature con-
stant during expansion, and the derivative (9 V/dr)p is determined by the change
in volume of the body on heating. Thus formula (17.1) gives the solution of the

problem and can be used to determine the required relation T = T(x).

Here it must be remembered that the integration of (17.1) determines log T
only to within an additive constant. The temperature Tis therefore determined
only to within an arbitrary constant factor. This is as it should be, of course

:

the choice of the units of measurement of the absolute temperature remains
arbitrary, which is equivalent to the presence of an arbitrary factor in the

function T = T(t).

§18. The Joule-Thomson process

Let us consider a process which consists in a gas (or liquid) at pressure Pi
being steadily transferred to a vessel where its pressure isP2 . By "steadily" we
mean that the pressures Pi and P2 remain constant throughout the process.



54 Thermodynamic Quantities §18

Such a process may be diagrammatically represented as a passage of the gas

through a porous partition (a in Fig. 1), the constancy of pressure on either

side of the partition being maintained by pistons moving inward and outward

in an appropriate manner. If the holes in the partition are sufficiently small,

the macroscopic flow velocity of the gas may be taken as zero. We shall also

assume that the gas is thermally isolated from the external medium.

Fig. 1

This process is called a Joule-Thomson process. It must be emphasised that

it is an irreversible process, as may be seen simply from the presence of the par-

tition with very small holes, which creates a large amount of friction and

destroys the velocity of the gas.

Let a quantity of gas, occupying a volume V\ at pressure Pi, pass (thermally

isolated) into the volume V2, the pressure becoming equal to P2 . The change

in energy E2 - Ex of this gas is equal to the work P\V\ done on the gas to move

it out of the volume Vi, minus the work P2V2 done by the gas in occupying the

volume V2 at pressure P2 . Thus E2—E\ — P\V\—P2V2i or

that is,

Er+PiVx = E2+P2V2,

Wx = W2 . (18.1)

Thus the heat function of the gas is conserved in a Joule-Thomson process.

The change in temperature caused by a small change of pressure in a Joule-

Thomson process is given by the derivative (dT/dP)w taken with the heat func-

tion constant. We may transform this derivative to independent variables P
andT:

/9T

\dP

dT\ d(T, W) _ d(T, W)/d(P, T) = (dW/dP)T
d(P, W) ~ 8(P, W)Jd(P, T) (dW/dT)P

whence, by means of formulae (14.7) and (16.7), we obtain

\w)w CpLV
dV\

dT)p
(18.2)

The change in entropy is given by the derivative (dS/dP)w . From the rela-

tion AW = TdS+ VdP, written in the form dS = dW/T- VdP/T, we have

(9,Sy8P)w = -V/T. (18.3)
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This quantity is always negative, as it should be: the change of a gas to a lower

pressure by an irreversible Joule-Thomson process results in an increase in

entropy.

We may add a few words concerning a process in which a gas originally in

one of two communicating vessels expands into the other vessel ; this process,

of course, is not a steady one, the pressures in the two vessels varying until

they become equal. When a gas expands into a vacuum in this way, its energy

E is conserved. If, as a result of the expansion, the total volume is changed

only slightly, the change in temperature is given by the derivative (dT/dV)E .

On converting this derivative to independent variables V, T, we obtain the

formula

(S).-*[~(B)J-

The change in entropy is given by

(dS/dV)E = P/T. (18.5)

The entropy increases on expansion, i.e. with increasing V, as it should.

§19. Maximum work

Let us consider a thermally isolated system consisting of several bodies not

in thermal equilibrium with one another. While equilibrium is being established,

the system may do work on some external objects. The transition to equilib-

rium may, however, occur in different ways, and the final equilibrium states of

the system will of course also be different; in particular, its energy and entropy

will be different.

Accordingly, the total work which can be got from a non-equilibrium system

will depend on the manner in which equilibrium is established, and we may ask

how the equilibrium state must be reached in order that the system should do

the maximum possible amount of work. Here we are concerned with the work

done because the system is not in equilibrium; that is, we must exclude any

work done by a general expansion of the system, since this work could also be

done by a system in equilibrium. We shall therefore assume that the total vol-

ume of the system is unchanged by the process (although it may vary during

the process).

Let the original energy of the system be E0) and the energy in the equilibrium

state, as a function of the entropy of the system in that state, be E(S). Since the

system is thermally isolated, the work which it does is just the change in

energy

:

\R\=E -E(S);
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we write \R\, since R < in accordance with convention if work is done by the

system.

Differentiating \R\ with respect to the entropy S of the final state, we have

d\R\/dS= - @E/dS)v = - T,

where T is the temperature of the final state ; the derivative is taken with the

volume of the system in its final state constant (the same as in the initial state).

We see that this derivative is negative, i.e. \R\ decreases with increasing S.

The entropy of a thermally isolated system cannot decrease, and the greatest

possible value of \R\ therefore occurs if S remains constant throughout the

process.

Thus we conclude that the system does maximum work when its entropy

remains constant, i.e. when the process of reaching equilibrium is reversible.

Let us determine the maximum work which can be done when a small

quantity of energy is transferred between two bodies at different temperatures

7*1 and T2, with T% > T\. First of all, it must be emphasised that, if the energy

transfer occurred directly between the bodies on contact, no work would be

done. The process would be irreversible, the entropy of the two bodies in-

creasing by dE(l/Tx — 1 /T2), where <52iis the amount of energy transferred.

Consequently, in order to achieve a reversible transfer of energy and so

maximise the work, some further body (the working medium) must be brought

into the system and caused to execute a reversible cyclic process. This process

must be carried out in such a way that the bodies between which direct

transfer of energy occurs are at the same temperature. The working medium

at temperature T"2 is brought into contact with the body at that temperature

and receives a certain amount of energy from it isothermally. It is then adia-

batically cooled to 7i, releases energy at this temperature to the body at 7i, and

finally is adiabatically returned to its original state. In the expansions invol-

ved in this process the working medium does work on external objects. The

cyclic process just described is called a Carnot cycle.

To calculate the resulting maximum work, we first note that the working

medium may be ignored, since it is returned to its initial state at the end of

the process. Let the hotter body 2 lose an amount of energy — 6E2 = — T% dS2,

and body 1 gain energy bE\ = T± dSi. Since the process is reversible, the sum

of the entropies of the two bodies remains constant, i.e. dSi = — &S2. The

work done is equal to the decrease in the total energy of the two bodies, i.e.

I

** Lax = -Mi-NEt = ~ TidSt-TtdS*

or

^lmax=^V^|^2|. (19.1)
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The ratio of the work done to the amount of energy expended is called the

efficiency r?. The maximum efficiency when energy is transferred from a hotter

to a cooler body is, from (19. 1),

t

nmix = <T*-TdiT* (19.2)

A more convenient quantity is the utilisation coefficient n, defined as the ratio

of the work done to the maximum work which can be obtained in given con-

ditions. Clearly

n = vMrnta- (19 - 3>

§20. Maximum work done by a body in an external medium

Let us now consider a different formulation of the maximum-work prob-

lem. Let a body be in an external medium whose temperature To and pressure

P differ from the temperature Tand pressure P of the body. The body can do

work on some object, assumed thermally isolated both from the medium and

from the body. The medium, together with the body in it and the object on

which work is done, forms a closed system. The volume and energy of the

medium are so large that the change in these quantities due to processes in-

volving the body does not lead to any appreciable change in the temperature

and pressure of the medium, which may therefore be regarded as constant.

If the medium were absent, the work done by the body on the thermally

isolated object, for a given change in state of the body (i.e. for given initial

and final states) would be completely defined, and equal to the change in the

energy of the body. The presence of the medium which also takes part in the

process makes the result indefinite, and the question arises of the maximum
work which the body can do for a given change in its state.

If a body does work on an external object in a transition from one state to

another, then in the reverse transition from the second state to the first some

external source of work must do work on the body. A transition in which

the body does the maximum work |i?|max corresponds to a reverse transition

which requires the external source to do the minimum work Rm \n . These must

obviously be the same, so that the calculation of the one is equivalent to that

of the other, and we shall speak below of the work done on the body by a

thermally isolated external source of work.

During the process, the body may exchange heat and work with the medium.

The work done on the body by the medium must of course be subtracted

from the total work done on the body, since we are concerned only with

the work done by the external source. Thus the total change AE in the energy

of the body in some (not necessarily small) change in its state consists of

three parts: the work R done on the body by the external source, the work
done by the medium, and the heat gained from the medium. As already
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mentioned, owing to the large size of the medium its temperature and press-

ure may be taken as constant, and the work done by it on the body is there-

fore P A V , while the heat given up by it is - T AS (the suffix zero indicates

quantities pertaining to the medium, while those for the body have no
suffix). Thus

AE = R+P AV -T AS .

Since the total volume of the medium and the body remains constant, A Vo =
~AV, and the law of increase of entropy shows that AS+ASo 2* 0; the

entropy of the thermally isolated source of work does not vary. Thus ASo s*

-AS. From R = AE-PqAVo+TqASo we therefore find

R ^ AE-T AS+P A V. (20. 1)

The equality occurs for a reversible process. Thus we again conclude that

the change occurs with minimum expenditure of work, and the reverse change

with maximum work, if it occurs reversibly. The value of the minimum work
is

*mm = A(E-T S+P V) (20.2)

(To and P , being constants, can be placed after A), i.e. this work is equal to

the change in the quantity E—T S+P V. For maximum work the formula

must be written with the opposite sign

:

l*lmax = -A(E-T S+Pan (20.3)

since the initial and final states are interchanged.

If the body is in an equilibrium state at every instant during the process

(but not, of course, in equilibrium with the medium), then for an infinitesi-

mal change in its state formula (20.2) may be written differently. Substitut-

ing^ = TdS-PdVindRmin = dE-T dS+P dV, we find

d*mm = (T-T ) dS-(P-P ) dV. (20.4)

Two important particular cases may be noted. If the volume and tempera-

ture of the body remain constant, the latter being equal to the temperature

of the medium, (20.2) gives Rmln = A(E-TS), or

*min = AF, (20.5)

i.e. the minimum work is equal to the change in the free energy of the body.

Secondly, if the temperature and pressure of the body are constant and equal

to To and Po, we have

Rmln = A0, (20.6)

i.e. the work done by the external source is equal to the change in the thermo-

dynamic potential ofthe body.
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It should be emphasised that in both these particular cases the body con-

cerned must be one not in equilibrium, so that its state is not defined by 7"and

V (or P) alone ; otherwise, the constancy of these quantities would mean that

no process could occur at all. We must consider, for example, a chemical

reaction in a mixture of reacting substances, a process of dissolution, or the

like.

Let us now assume that a body in an external medium is left to itself and

no work is done on it. Spontaneous irreversible processes will occur in the

body and bring it into equilibrium. In the inequality (20.1) we must now put

R = 0, and so

A(E-ToS+PoV)^0. (20.7)

This means that the processes occurring in the body will cause the quantity

E— ToS+PoVto decrease, and it will reach a minimum at equilibrium.

In particular, for spontaneous processes at constant temperature T = To

and constant pressure P = Pq, the thermodynamic potential & of the body

decreases, and for processes at constant temperature T = To and constant

volume of the body its free energy F decreases. These results have already been

derived by a different approach in §15. It may be noted that the derivation

given here does not essentially assume that the temperature and volume (or

pressure) ofthe body remain constant throughout the process : we may say that

the thermodynamic potential (or free energy) of a body decreases as a result

of any process for which the initial and final temperature and pressure (or

volume) are the same (and equal to the temperature and pressure of the

medium), even if they vary during the process.

Another thermodynamic significance may also be ascribed to the minimum
work. Let S

t
be the total entropy of the body and the medium. If the body is

in equilibrium with the medium, S
t
is a function of their total energy E

t
:

S
L
= S

t
(E

t).

If the body is not in equilibrium with the medium, their total entropy differs

from S
t(EJ for the same value of the total energy E

t
by some amount AS

t

< 0. In Fig. 2 the continuous line shows the function S
t
(E

t
) and the vertical

"mm

Fig. 2
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segment ab is —AS
t
. The horizontal segment be is the change in the total

energy when the body goes reversibly from the state of equilibrium with the

medium to the state corresponding to the point b. In other words, this segment

represents the minimum work which must be done by some external source

to bring the body from the state of equilibrium with the medium to the state

considered; the equilibrium state in question (the point c in Fig. 2) is, of

course, not the same as that corresponding to the given value ofE
t
(point a).

Since the body is a very small part of the whole system, the processes

involving it cause only a negligible relative change in the total energy and

entropy. Fig. 2 therefore shows that

_ dS
t
(E

t)A*t- d^r min -

But the derivative dE
t
/dS

t
is the equilibrium temperature of the system, i.e.

the temperature To of the medium. Thus

AS
t
= -%* = ~(AE-T AS+P*AV). (20.8)

7 o -'o

This formula determines the amount by which the entropy of a closed system

(body+ medium) differs from its greatest possible value if the body is not in

equilibrium with the medium ; AE, AS and A V are here the differences be-

tween the energy, entropy and volume of the body and their values in a state

ofcomplete equilibrium.

§21. Thermodynamic inequalities

In deriving the conditions of thermal equilibrium from that of maximum
entropy, we have so far considered only the first derivatives. By equating to

zero the derivatives with respect to energy and volume, we have deduced in

§§9 and 12 the equality of temperature and pressure in all parts of the body as

the conditions of equilibrium. But the vanishing of the first derivatives is

only a necessary condition for an extremum and does not ensure that the

entropy is in fact a maximum. The determination of the sufficient conditions

for a maximum involves, of course, an examination of the second derivative

of the function.

Such an examination is, however, more conveniently carried out not from

the condition of maximum entropy of a closed system but from another equi-

valent condition.t Let us consider some small but macroscopic part of the

t As regards the dependence of the entropy on the momenta of macroscopic motion,

we have already investigated the conditions to be imposed on both the first and the second

derivatives (§10), obtaining in this way the conditions that internal macroscopic motions

in the body be absent and that the temperature be positive.
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body concerned. With respect to this part, the remainder of the body may
be regarded as an external medium. Then, as shown in §20, we can state that

in equilibrium the quantity

E-T S+P V

has a minimum, where E, S and V are the energy, entropy and volume of

the part considered, and To, Po the temperature and pressure of the medium,

i.e. of the remainder of the body. Clearly T and P are also the temperature

and pressure of the part considered when in equilibrium.

Thus in any small deviation from equilibrium the change in the quantity

E—T S+P Vmust be positive, i.e.

dE-T dS+P dV>0. (21.1)

In other words, the minimum work which must be done to bring this part of

the body from equilibrium to any neighbouring state is positive.

In what follows the equilibrium values will be implied for any coefficients

appearing in the deviations of thermodynamic quantities from their equi-

librium values, and the zero suffixes will therefore be omitted.

Expanding dE as a series (regarding E as a function of S and V), we have

as far the second-order terms

"-sfw+s^+i W^2+2^v dssv+W^^
But dE/dS = T, dE/dV = -P, so that the first-order terms are T6S-P6V,
and cancel when dE is substituted in (21.1). Thus we obtain the condition

d2E c)
2F r) 2F

If such an inequality holds for arbitrary dS and 5V, two conditions must be

satisfied i
1

"

d2E/dS2 > 0, (21.3)

d2Ed2E I &E \
2

dS2 dV2 ~\dSdv) ( L)

For d2E/dSP we have

82£/6S2 = (dTldS)v = TjCv .

The condition (21.3) therefore becomes T/Cv > 0, and since T > 0,

Cv > 0, (21.5)

i.e. the specific heat at constant volume is always positive.

t The special case where the equality sign holds in (21.4) will be discussed in §84:
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The condition (21 .4) may be written in terms of the Jacobian

d[(dE/dS)v,
(dE/dV)s]

9(S, V)

or

d(T, P)/d(S, V) < 0.

Changing to the variables Tand V, we have

9(7; P) d(T,P)/d(T,V) (9P/9F)T T (dP- T rF \~» <o.
Td(S, V) d(S, V)/d(T, V) (dS/dT)v

Since Cv
> 0, this is equivalent to the condition

(dP/dV)T < 0, (21.6)

i.e. an increase in volume at constant temperature is always accompanied by

a decrease in pressure.

The conditions (21.5) and (21.6) are called thermodynamic inequalities.

States in which these conditions are not satisfied are unstable and cannot

exist in Nature.

It has already been noted in §16 that from the inequality (21.6) and formula

(16.10) we always have Cp > Cv . From (21.5) we can therefore conclude that

Cp =~ (21.7)

always.

The fact that Cv and Cp are positive means that the energy is a monoton-

ically increasing function of temperature at constant volume, and the heat

function behaves similarly at constant pressure. The entropy increases mono-

tonically with temperature at either constant volume or constant pressure.

The conditions (21.5), (21.6), which have been derived for an arbitrary

small part ofa body, are ofcourse valid for the whole body also, since in equi-

librium the temperatures and pressures of all parts of the body are the same.

Here it is assumed that the body is homogeneous (only such bodies have been

considered so far). It must be emphasised that the fulfilment of the conditions

(21.5), (21.6) depends on the homogeneity of the body. We can, for example,

consider a body whose particles are held together by gravitational forces.

Such a body will clearly be inhomogeneous, having a higher density towards

the centre, and the specific heat of the body as a whole may be less than zero,

so that its temperature rises as its energy decreases. We may note that this

does not contradict the result that the specific heat is positive for every small

part of the body, since in these conditions the energy of the whole body is not

equal to the sum of the energies of its parts; there is also the energy of the

gravitational interaction between these parts.
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The inequalities derived above are conditions of equilibrium, but their

fulfilment is not sufficient for the equilibrium to be completely stable. There

can exist states such that the entropy decreases for an infinitesimal deviation

from the state and the body then returns to its initial state, whereas for a finite

deviation the entropy may be greater than in the original state. After such

a finite deviation the body does not return to its original state, but will tend

to pass to some other equilibrium state corresponding to a maximum entropy

greater than that in the original state. Accordingly, we must distinguish

between metastable and stable equilibrium states. A body in a metastable

state may not return to it after a sufficient deviation. Although a metastable

state is stable within certain limits, the body will always leave it sooner or

later for another state which is stable, corresponding to the greatest of the

possible maxima of entropy. A body which is displaced from this state will

always eventually return to it.

§22. Le Chatelier's principle

Let us consider a closed system consisting of a body and a medium surround-

ing it. Let S be the total entropy of the system, and y a quantity pertaining

to the body, such that the condition for S to be a maximum relative to y, i.e.

dS/dy = 0, signifies that the body itself is in equilibrium, though it is not

necessarily in equilibrium with the medium. Also, let jc be another thermo-

dynamic quantity pertaining to the same body, such that if both dS/dy =
and dS/dx = the body is not only in internal equilibrium but also in equi-

librium with the medium.

We shall use the notation

X=-dS/dx, Y=-dS/dy. (22.1)

In complete thermodynamic equilibrium the entropy S must be a maximum.
For this, besides the conditions

the conditions

and

X = 0, Y = 0, (22.2)

(dX/dx)v > 0, @Y/dy)x > (22.3)

mum-
must be satisfied.

Let us now assume that the equilibrium of the body with the medium is

destroyed by some small external interaction, the quantity x being somewhat
changed and the condition X = no longer satisfied ; we assume that y is

not directly affected by the interaction in question. Let the change in x be Ax.
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Then the change in Zat the instant of interaction is

(AX)
y
= (dX/dx)y Ax.

The change in x at constant y leads, of course, to a violation of the condi-

tion Y = also, i.e. of internal equilibrium of the body. When equilibrium

is again restored, the quantity X = zlX will be

(AX)Y=0 = (dX/dx)Y=0 Ax,

where the derivative is taken at constant Y(= 0).

To compare the two values of AX, using the properties of Jacobians, we

have

(dX\ d(X, Y) d(X, Y)/d(x, y) (dX\ [(8*/8j)J2

\dx) Y=Q d(x,Y) d(x,Y)/d(x,y) \dx)
y

(dY/dy)x
'

The denominator of the second term in this expression is positive by the condi-

tion (22.3) ; using also (22.4), we find that

or

(dX/dx)y > (dX/dx)Y=0 > 0, (22.5)

\(AX)y \
> \(AX)Y=0 \. (22.6)

The inequality (22.5) or (22.6) forms the content of what is called Le

Chatelier 's principle.

We shall regard the change Ax of the quantity x as a measure of the external

interaction acting on the body, and AX as a measure of the change in prop-

erties of the body resulting from this interaction. The inequality (22.6) shows

that, when the internal equilibrium of the body is restored after the external

interaction which disturbed it, the value ofAX is reduced.Thus Le Chatelier's

principle may be formulated as follows: an external interaction which dis-

turbs the equilibrium brings about processes in the body which tend to reduce

the effects of this interaction.

The above may be illustrated by some examples.

First of all, it is convenient to modify somewhat the definition of the

quantities X and Y by using formula (20.8), according to which the change in

entropy of the system (medium+ body) is ~RmiJT , where T is the tempera-

ture of the medium and Rmin the minimum work needed to bring the body

from a state of equilibrium with the medium to the state in question. We can

therefore write

X=~^^L, Y=1-^L. (22.7)TQ dx TQ dy

For an infinitesimal change in the state of the body we have (see (20.4))

d*min = (T-T ) dS-(P-PQ) dV;
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here and below all quantities without suffix relate to the body, and those

with suffix to the medium.

Let x be the entropy S of the body. Then X = (T-T )/Tq. The equilibrium

condition X = gives T = T , i.e. the temperatures of the body and the

medium are equal. The inequalities (22.5) and (22.6) become

(dT/dS)y > (dT/dS)Y=0 > 0, (22.8)

\(4T)y \>\(AT)Y=0 \. (22.9)

The significance of these inequalities is as follows. The change in x (the

entropy of the body) means that a quantity of heat is given to or taken from

the body. This destroys the equilibrium of the body itself and, in particular,

changes its temperature by (AT)
y

. The restoration of equilibrium in the

body has the result that the absolute value of the change in temperature

decreases, becoming (AT)Y=0 , i.e. it is as if the result of the interaction

which brings the body out of equilibrium were reduced. We can say that

heating or cooling a body brings about processes in it which tend to lower

or raise the temperature respectively.

Now let x be the volume V of a body. Then X = -(P-P )/T. In equi-

librium X = 0, i.e. P = P . The inequalities (22.5) and (22.6) give

(dPfd V)y < (3P/8 V)Y=0 < 0, (22. 10)

\(AP)y \^\(AP)Y=0 \. (22.11)

If the body is disturbed from equilibrium by a change in its volume at

constant temperature, then, in particular, its pressure is changed; the res-

toration of equilibrium in the body leads to a decrease in the absolute value

of the change in pressure. Since a decrease in the volume of the body causes

an increase in its pressure, and vice versa, we can say the decreasing or increas-

ing the volume of a body brings about processes in it which tend to lower or

raise the pressure respectively.

Later we shall meet with numerous applications of these results (to solu-

tions, chemical reactions and so on).

It may also be noted that, if v in the inequalities (22.8) is taken to be the

volume of the body, we have

(dTjdS)
y
= (dT/dS)v = T/Cv ,

(dT/dS)v= = (dT/dS)P = T/Cp ,

since the condition 7=0 then denotes P = P , i.e. constant pressure.

Thus we again obtain the already familiar inequalities Cp > Cv
> 0. Simi-

larly, if in (22.10) y is taken as the entropy of a body, the condition Y =
implies that the temperature is constant, T = T , and we find

OP/6F)S <(8P/8F)T <0,

another result already known.



66 Thermodynamic Quantities §23

§23. Nernst's theorem

The fact that the specific heat Cv
is positive means that the energy is a

monotonically increasing function of the temperature. Conversely, when
the temperature falls the energy decreases monotonically, and therefore,

when the temperature has its least possible value, i.e. at absolute zero, a body

must be in the state of least possible energy. If we regard the energy of a

body as the sum of the energies of the parts into which it may be imagined to

be divided, we can say that each of these parts will also be in the state of

least energy; it is clear that the minimum value of the sum must correspond

to the minimum value of each term.

Thus at absolute zero any part of the body must be in a particular quantum

state, the ground state. In other words, the statistical weights of these parts

are equal to unity, and therefore so is their product, i.e. the statistical weight

of the macroscopic state of the body as whole. The entropy of the body,

being the logarithm of its statistical weight, is therefore zero.

We consequently reach the important result that the entropy of any body

vanishes at the absolute zero of temperature. This is called Nernsfs theorem*.

It should be emphasised that this theorem is a deduction from quantum

statistics, in which the concept of discrete quantum states is of essential

importance. The theorem can not be proved in purely classical statistics,

where the entropy is determined only to within an arbitrary additive constant

(see §7).

Nernst's theorem enables us to draw conclusions also concerning the

behaviour of certain other thermodynamic quantities as T -* 0.

For instance, it is easy to see that for T = the specific heats Cp and Cv

both vanish

:

Cp
= Cv

= for T= 0. (23.1)

This follows immediately from the definition of the specific heat in the form

C = TdS/dT

= dS/d log T.

When T -- 0, log T -* «>, and since S tends to a finite limit, namely zero,

it is clear that the derivative tends to zero.

The thermal expansion coefficient also tends to zero

:

(dV/dT)P = for T = 0. (23.2)

For this derivative is equal to the derivative —(dS/dP) T (see (16.4)), which

vanishes for T = 0, since S = for T = and any pressure.

t To avoid misunderstandings we should emphasise that this refers to the temperature

tending to zero with other conditions remaining unchanged—say at constant volume, or at

constant pressure. If, on the other hand, the temperature of a gas tends to zero while its

density decreases without limit, for example, the entropy need not tend to zero.
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Similarly, we can see that

(dPfdT)v = for T = 0. (23.3)

The entropy usually vanishes, for T -* 0, according to a power law, i.e.

as S = aT71
, where a is a function of pressure or volume. In this case, clearly,

the specific heats and (dV/dT)p ,
(8P/6T)V will tend to zero in the same way

(with the same value of n).

Finally, it may be seen that the difference C
p
-Cv

tends to zero more

rapidly than the specific heats themselves, i.e.

(Cp-Cv)/Cp = for T=0. (23.4)

For let the entropy tend to zero as S ~ T1 for T — 0. From formula (16.9)

we then see that Cp-Cv
~ T*1 +\ so that (Cp-Cv)jCp ~ Tn+1 ; it should be

borne in mind that the compressibility (dV/dP)T is in general finite and not

zero when T = 0.

If the specific heat of a body is known for all temperatures, the entropy

can be calculated by integration, and Nernst's theorem gives the value

of the constant of integration. For example, the dependence of the entropy on

temperature for a given pressure is determined by

T

S= [{CpIT)dT. (23.5)

o

The corresponding formula for the heat function is

T

W = W + f Cp dT, (23.6)

o

where WQ is the value of the heat function for T = 0. Similarly, for the

thermodynamic potential = W— TS we have

T T

0= W +[cp dT-T[^dT. (23.7)

j
CpdT-TJ

§24. The dependence of the thermodynamic quantities on the number of

particles

As well as the energy and entropy, such thermodynamic quantities as F,

and W also have the property of additivity, as follows directly from their

definitions if we bear in mind that the pressure and temperature are constant

throughout a body in equilibrium. From this property we can draw certain

conclusions concerning the manner in which each of these quantities depends
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on the number of particles in the body. Here we shall consider bodies con-

sisting of identical particles (molecules) ; all the results can be immediately

generalised to mixtures of different particles (see §86).

The additivity of a quantity signifies that, when the amount of matter

(and therefore the number jV of particles) is changed by a given factor, the

quantity is changed by the same factor. In other words, we can say that an

additive thermodynamic quantity must be a homogeneous function of the

first order with respect to the additive variables.

Let us express the energy of the body as a function of the entropy, volume,

and number of particles. Since S and V are themselves additive, this function

must be of the form
E = Nf(S/N, V/N), (24.1)

the most general homogeneous function of the first order in N, S and V.

The free energy F is a function of N, T and V. Since the temperature is

constant throughout the body, and the volume is additive, a similar argument

gives

F = Nf(V/N, T). (24.2)

In exactly the same way we have for the heat function W, expressed as a

function of N, S and the pressure P,

W = Nf(SjN, P). (24.3)

Finally, the thermodynamic potential as a function of N, P and T is

= Nf(P, T). (24.4)

In the foregoing discussion we have essentially regarded the number of

particles as a parameter which has a given constant value for each body.

We shall now formally considerN as a further independent variable. Then the

expressions for the differentials of the thermodynamic potentials must in-

clude terms proportional to dN. For example, the total differential of the

energy will be written

dE = TdS-P dV+p dN, (24.5)

where /u denotes the partial derivative

fi = (dE/dN)s> v . (24.6)

The quantity (i is called the chemical potential of the body. Similarly we

have

dW = TdS+ VdP+pdN, (24.7)

dF = - S dT~PdV+fi dN, (24.8)

d& = -S dT+ VdP+ (x dN, (24.9)
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with the same fi. These formulae show that

H = (dWJdN)s> P = (dF/dtyr, v = (d0/dN)P> T> (24.10)

i.e. the chemical potential can be obtained by differentiating any of the

quantities E, W, F and with respect to the number of particles, but the

result is expressed in terms of different variables in each case.

Differentiating in the form (24.4), we find that fi = d0/dN = f(P, T),

i.e.

0=N(x. (24.11)

Thus the chemical potential of a body (consisting of identical particles) is

just its thermodynamic potential per molecule. When expressed as a function

of P and T, the chemical potential is independent of N. Thus we can imme-
diately write down for the differential of the chemical potential

dfi = -sdT+vdP, (24.12)

where s and v are the entropy and volume per molecule.

If we consider (as we have usually done hitherto) a definite amount of

matter, the number of particles in it is a given constant, while the volume
is variable. Let us now take a certain volume within the body, and consider

the matter enclosed therein; the number of particles N will now be variable,

and the volume V constant. Then, for example, equation (24.8) reduces to

dF= -SdT+pdN.

Here the independent variables are Tand N. We may define a thermodynamic
potential such that the second independent variable is n, not N. To do so,

we substitute p diV = d(/xN)-N dfj,, obtaining

d(F-pN)= -SdT-Ndfi.

But (iN = 0, and F-0 = -PV. Thus the new thermodynamic potential

(denoted by Q) is just

Q = -PV, (24.13)
and

dQ = -SdT-Ndfi. (24.14)

The number of particles is obtained by differentiating Q with respect to the

chemical potential at constant temperature and volume

:

N = ~(dQ/d(*)T> v = V(dP/dp)
Tt v . (24.15)

In the same way as we proved the equality of small changes in E, W, F and
(with the appropriate pairs of quantities constant (see (15.12)), we can

easily show that the change {&Q) TtlttV at constant T, p, V has the same
property:

Ws, v,n = Wt, v, n = (*fc)r> p, n = (^W)8f PtN = (6Q)T> v> u . (24. 16)
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Finally, as in §§15 and 20 for the free energy and the thermodynamic
potential, we may show that the work in a reversible process occurring at

constant T, V and ft is equal to the change in the potential Q. In a state of
thermal equilibrium the potential Q is a minimum with respect to any change
of state at constant T, V, fi.

PROBLEM
Derive an expression for the specific heat C„ in terms of the variables T, ft, V.

Solution. We transform the derivative C„ = T(dS/dT)r>y to the variables T, V, fiy

writing (with V regarded as a constant throughout)

l*S\ = d(S,N) = d(S,N)/d(T,/j) /dS\ (BS/dfi^dN/dT)^
\dTjy Q(T,N) d(T,N)/d(T,fi) \dT)M

~
(dN/dfi)r

But @S/dfi)T = -&Q/dTdfi = (6W/67V and therefore

c =tK™\ -
[W87W

\\vr)M (dN/dfi)T r

§25. Equilibrium of a body in an external field

Let us consider a body in an external field which is constant in time.

The different parts of the body are in different conditions, and the body will

therefore be inhomogeneous. One of the conditions of equilibrium of such a
body is again that the temperature should be constant throughout it, but the

pressure will now vary from point to point.

To derive the second condition of equilibrium, let us consider two ad-

joining volumes in the body and maximise their entropy S = Si+52 when
the remainder of the body is in a fixed state. One necessary condition for a

maximum is that the derivative dS/dNi should be zero. Since the total

number of particles N1+N2 in these two parts of the body is regarded as

constant, we have

&S^_aSi 9^2 dN2 _ dSt dS2 _
dNt

~ dN±
+ dN2 dNx~ 8JV1 6W2

The equation dis = TdS+p dN, written in the form

as =f-fm
shows that the derivative dS/dN for constant E and Tis - (J./T. Thus (xxIT-l =
(j,2/T2 . But in equilibrium 7\ = T2, so that /*i = (x2 . We therefore con-

clude that in equilibrium in an external field, in addition to the constancy

of temperature, we must have

fj,
= constant, (25.1)

i.e. the chemical potential of every part of the body must be the same. The
chemical potential of each part is a function of its temperature and pressure,
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as well as of the parameters which define the external field. If there is no field,

the constancy of n and T necessarily implies that of the pressure.

In a gravitational field the potential energy u of a molecule is a function

only of the co-ordinates x, y, z of its centre of gravity (and not of the arran-

gement of the atoms within the molecule). In this case the change in the

thermodynamic quantities for the body amounts to adding to its energy the

potential energy of the molecules in the field. In particular, the chemical

potential (the thermodynamic potential per molecule) has the form
fj,
=

fj, +
u(x, y, z), where nd(P, T) is the chemical potential in the absence of the

field. Thus the condition of equilibrium in a gravitational field may be

written

H (P, T)+u(x, y, z) = constant. (25.2)

In particular, in a uniform gravitational field u = mgz (where m is the mass

of a molecule, g the acceleration due to gravity, and z the vertical co-ordinate).

Differentiating equation (25.2) with respect to the co-ordinate z at constant

temperature, we have v dP = —mgdz, where v = (dfio/dP)T is the specific

volume. For small changes in pressure, v may be regarded as constant. Substi-

tuting the density q = m/v and integrating, we obtain

P = constant —Qgz,

the customary formula for the hydrostatic pressure in an incompressible fluid.

§26. Rotating bodies

In a state of thermal equilibrium, as we have seen in §10, only a uniform

translational motion and a uniform rotation of a body as a whole are pos-

sible. The uniform translational motion needs no special treatment, since by

Galileo's relativity principle it has no effect on the mechanical properties

of the body, nor therefore on its thermodynamic properties, and the thermo-

dynamic quantities are unchanged except that the energy of the body is

increased by its kinetic energy.

Let us consider a body in uniform rotation round a fixed axis with angular

velocity Q. Let E(p, q) be the energy of the body in a fixed co-ordinate system

and E'(p, q) the energy in a co-ordinate system rotating with the body. We
know from mechanics that these quantities are related by

E'(p, q) = E(p, q)-Q.mp, q), (26.1)

where M(p, q) is the angular momentum of the body.f

t See Mechanics, §39. Although the derivation of formula (39.13) is based on classical

mechanics, in quantum theory exactly the same relations apply to the operators of the
corresponding quantities. Hence all the thermodynamic relations derived below are inde-
pendent of which mechanics describes the motion of the particles in the body.
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Thus the energy E'(p, q) depends on the angular velocityQ as a parameter,

and

dE'(p>q)/dG= -M(p,q).

Averaging this equation over the statistical distribution and using formula

(11.3), we obtain

(dE'/dD)s = -M, (26.2)

where E' = E'(p, q), M = M(p, q) are the mean (thermodynamic) energy and
angular momentum of the body.

From this relation we can write down the differential of the energy of a

rotating body of given volume

:

dE' = TdS-M'dD. (26.3)

Similarly, for the free energy F' = E' - TS (in the rotating co-ordinate sys-

tem) we have

dF' = -SdT~M.dQ. (26.4)

Averaging equation (26.1) gives

E' = E-M.Q. (26.5)

Differentiating this equation and substituting (26.3), we obtain the differen-

tial of the energy in the fixed co-ordinate system :

dE = TdS+Q.dM. (26.6)

Correspondingly, for the free energy F = E— TS

dF= -SdT+Q.dM. (26.7)

Thus in these relations the independent variable is not the angular velocity

but the angular momentum, and

Q = (6£/8M)s = (9F/8M)r . (26.8)

As we know from mechanics, a uniform rotation is in a certain sense equi-

valent to the presence of two fields of force, centrifugal and Coriolis. The

centrifugal forces are proportional to the size of the body, as they involve the

distance from the axis of rotation; the Coriolis forces are independent of the

size of the body. For this reason the effect of the Coriolis forces on the thermo-

dynamic properties of a rotating macroscopic body is entirely negligible in

comparison with that of the centrifugal forces, and the former can usually be

neglected.* The condition of thermal equilibrium of a rotating body is there-

fore obtained by simply substituting for u(x, y, z) in (25.2) the centrifugal

energy of the particles

:

H (P, r)-imiiV2 = constant, (26.9)

t It may be shown that in classical statistics the Coriolis forces do not affect the statistical

properties of the body; see §34.
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where fxo is the chemical potential of the body at rest, m the mass of a mole-

cule, and r the distance from the axis of rotation.

For the same reason, the total energy E of a rotating body may be written

as the sum of its internal energy (here denoted by Ein) and its kinetic energy

of rotation:

E = EiQ +M2/2I, (26.10)

where / is the moment of inertia of the body with respect to the axis of rota-

tion. It should be remembered that rotation in general changes the distribu-

tion of mass in the body, and so the moment of inertia and internal energy

of the body are themselves in general functions ofQ (or of M). They may be

regarded as constants independent ofQ only when the rotation is sufficiently

slow.

Let us consider an isolated uniformly rotating solid with a given mass

distribution. Since the entropy of a body is a function of its internal energy,

we have in this case S = S(E—M2
J2I). Because the body is a closed system,

its total energy and angular momentum are conserved, and the entropy must

have the maximum value possible for the given M and E. We therefore con-

clude that the equilibrium rotation of the body takes place about the axis

with respect to which the moment of inertia has the greatest possible value.

This assumes that the axis of rotation is necessarily a principal axis of inertia

of the body, but the latter result is evident: if the body rotates about an axis

other than a principal axis of inertia, then, as we know from mechanics, the

axis of rotation will itself precess in space, and the rotation will be non-

uniform, and therefore not an equilibrium rotation.

§27. Thermodynamic relations in the relativistic region

Relativistic mechanics leads to a number of changes in the usual thermo-

dynamic relations. Here we shall discuss the most interesting of these changes.

If the microscopic motion of the particles forming a body becomes relativ-

istic, the general thermodynamic relations are unchanged, but the applica-

tion of relativity theory to this case leads to an important inequality between

the pressure and energy of the body

:

P < £/3K, (27.1)

where E is the energy of the body including the rest energy of the particles

in it.
f

The changes caused by the general theory of relativity in the conditions of

thermal equilibrium, taking account of the gravitational field of the body
itself, are of fundamental importance. Let us consider a macroscopic body at

t See The Classical Theory of Fields, §35.
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rest; its gravitational field is, of course, constant. In a constant gravitational

field we must distinguish the conserved energy E of any small part of the

body from the energy E measured by an observer situated at a given point.

These two quantities are related by*

E = E^/-gw ,

where goo is the time component of the metric tensor. But, from the sense of

the proof given in §9 that the temperature is constant throughout a body in

equilibrium, it is clear that the quantity obtained by differentiating the entropy

with respect to the conserved energy E must be constant. The temperature T
measured by an observer situated at a given point in space is, however, ob-

tained by differentiating the entropy with respect to the energy E, and will

therefore be different at different points in the body.

To derive a quantitative relation, we note that the entropy, by definition,

depends only on the internal state of the body and so is unchanged by the

presence of a gravitational field (provided that this field does not affect the

internal properties of the body, a condition which is always satisfied in prac-

tice). The derivative with respect to entropy of the conserved energy Eo is

therefore Ty/— goo, and so one of the conditions of thermal equilibrium is

that

Ty/~8oo = constant (27.2)

throughout the body.

A similar change occurs in the second condition of equilibrium, the con-

stancy of the chemical potential. The latter is defined as the derivative of the

energy with respect to the number of particles. Since this number is of course

unaffected by a gravitational field, we have for the chemical potential meas-

ured at any given point a relation of the same kind as for the temperature:

fj^/—goo — constant. (27.3)

We may note that the relations (27.2), (27.3) may be written

T = constant Xd*°/ds,

(j, = constant Xdx9/ds,

which enable us to consider the body not only in the frame of reference in

which it is at rest but also in those where it is moving (rotating as a whole).

The derivative dxP/ds must be taken along the world line described by the

point considered in the body.

In a weak (Newtonian) gravitational field, goo = —l—2<f>/c2, where <f>
is

the gravitational potential.* Substituting this expression in (27.2) and taking

the square root, we have to the same approximation

T = constant X(l - <£/c2). (27.5)

t See The Classical Theory of Fields, §89 (formula (89.9) with v = and E = mc2
).

% See The Classical Theory of Fields, §87.
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Since
<f>
< 0, this shows that in equilibrium the temperature is higher at

points in the body where
1

4> |
is greater, i.e. within the body. In the limit of

non-relativistic mechanics (c — «>), (27.5) becomes T = constant, as it

should.

We can similarly transform the condition (27.3), bearing in mind that the

relativistic chemical potential, in the limit of classical mechanics, does not

directly become the ordinary (non-relativistic) expression for the chemical

potential in the absence of a field, which we now denote by (x , but juo-fmc2
,

where mc2
is the rest energy of a particle of the body. Thus we have

eV-goo ^ (/w +^2)(i+^2
)

=s fi, +mc2
+m<f),

so that the condition (27.3) becomes

fi +m<J) = constant;

this agrees with (25.2), as it should.

Finally, we may mention a useful relation which follows immediately from
the conditions (27.2) and (27.3). Dividing one by the other, we find that

fx/T = constant, and hence

dp/ft = dT/T.

From (24.12), at constant volume (equal to unity) we have

dP = SdT+Ndft,

where S and N are the entropy and number of particles in unit volume of the

body. Substituting dT = (T//j) dfi and noting that pN+ST = 0+ST = e-fP,

where e is the energy per unit volume, givesf

dfi/fj, = dP/(e+P). (27.6)

t In the non-relativistic case this relation becomes a trivial identity. Putting ft a mc2

e st qc* *> P (where q is the density), we get dfi = v dP with v = mfg the volume per
particle; this is as it should be for T = constant.



CHAPTER III

THE GIBBS DISTRIBUTION

§28. The Gibbs distribution

Let us now turn to the problem stated in Chapter I of finding the distribution

function for a subsystem, i.e. any macroscopic body which is a small part of

some large closed system. The most convenient and general method of

approaching the solution of this problem is based on the application of the

microcanonical distribution to the whole system.

Distinguishing the body in question from the rest of the closed system, we
may consider the system as consisting of these two parts. The rest of the

system will be called the "medium" in relation to the body.

The microcanonical distribution (6.6) can be written in the form

dw = constant X<5(£+£'-£«») dr dP, (28.1)

where E, dT and E', dr' relate to the body and the medium respectively, and

E<0)
is the given value of the energy of the closed system, which must be equal

to the sum E+E' of the energies of the body and the medium.
Our object is to find the probability wn of a state of the whole system

such that the body concerned is in some definite quantum state (with energy

E„), i.e. a microscopically defined state. The microscopic state of the medium
is of no interest, so that we shall suppose this to be in a macroscopically

defined state. Let AT' be the statistical weight of the macroscopic state of the

medium, and let AE' be the range of values of the energy of the medium
corresponding to the range AP of quantum states in the sense discussed in

§7.

The required probability wn can be found by taking dr — 1 in (28.1),

putting E = En and integrating with respect to T' :

wn = constantX
\
d(En+E'-E (0)

) df'.

I
Let r\E') be the total number of quantum states of the medium with energy

not exceeding E'. Since the integrand depends only on E', we can change to

integration with respect to E\ putting dr' = (dr'(E')/dE') dE' . The derivative

dr'/dE' is replaced (cf. §7) by

dr/dE' = es '(En
>IAE',

76
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where S'(E') is the entropy of the medium as a function of its energy; AE' is,

of course, also a function of E'. Thus we have

wn = constant X ^~d(E'+En -E™)dE'.

Owing to the presence of the delta function, the result of the integration is

simply to replace E' by E i0)—En :

W')e' = .

constantX [^7) (28.2)
EW-En

We now use the fact that, since the body is small, its energy En is small in

comparison with Em . The quantity AE' undergoes only a very small relative

change when E' varies slightly, and so in AE' we can simply put E' — E{0)
;

it then becomes a constant independent of En . In the exponential factor e
s

'

,

we must expand S'(E i0) -En) in powers ofEn as far as the linear term:

S'(£<o>_£n) = S'(Ei0))-En dS'(£«»)/d£«».

The derivative of the entropy S" with respect to energy is just 1/T, where T
is the temperature of the system ; the temperatures of the body and the medium
are the same, since the system is assumed to be in equilibrium.

Thus we have finally for wn the expression

wn = Ae-En/T
} (28.3)

where A is a normalisation constant independent of En . This is one of the

most important formulae in statistical physics. It gives the statistical distribu-

tion of any macroscopic body which is a comparatively small part of a large

closed system. The distribution (28.3) is called the Gibbs distribution or canon-

ical distribution; it was discovered by Gibbs for classical statistics in 1901.

The normalisation constant A is given by the condition £wn = 1, whence

1:=2>-.e»/t
. (28.4)A n

The mean value of any physical quantity / pertaining to the body can be

calculated by means of the Gibbs distribution, using the formula

/ = £ wnfnn
n

= Zfnne-E»ITlZe-EJT. (28 .5)
n n

In classical statistics an expression exactly corresponding to (28.3) is

obtained for the distribution function in phase space:

o(p,q) = Ae-E(P>Q» T
, (28.6)
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where E(p, q) is the energy of the body as a function of its co-ordinates and
momenta. 1" The normalisation constant A is given by the condition

j
q dp dq = A

j
e~E<P> <MT dp dq = 1

.

(28.7)

In practice, cases are frequently encountered where it is not the entire

microscopic motion of the particles which is quasi-classical, but only the

motion corresponding to some of the degrees of freedom, whereas the motion

with respect to the remaining degrees of freedom is quantised (for example,

the translational motion of the molecules may be quasi-classical while the

motion of the atoms within the molecules is quantised). Then the energy

levels of the body may be written as functions of the "quasi-classical" co-

ordinates and momenta: En = En(j>, q), where n denotes the set of quantum
numbers defining the "quantised part" of the motion, for which/? and q are

parameters. The Gibbs distribution formula then becomes

*Wn(P, 4) = Ae-E«(p, flO/r
dpcl dqch (28.8)

where dp
cl
dq

cl
is the product of differentials of the "quasi-classical" co-

ordinates and momenta.

Finally, the following comment is necessary concerning the group of prob-

lems which may be solved by means of the Gibbs distribution. We have spo-

ken of the latter throughout as the statistical distribution for a subsystem, as

in fact it is. It is very important to note, however, that this same distribution

can quite successfully be used also to determine the fundamental statistical

properties of bodies forming closed systems, since such properties of a body

as the values of the thermodynamic quantities or the probability distributions

for the co-ordinates and velocities of its individual particles are clearly inde-

pendent of whether we regard the body as a closed system or as being placed

in an imaginary thermostat (§7). But in the latter case the body becomes a

"subsystem" and the Gibbs distribution is immediately applicable to it. The

difference between bodies forming closed and non-closed systems when the

Gibbs distribution is used appears essentially only in the treatment of the

fairly unimportant problem of fluctuations in the total energy of the body.

The Gibbs distribution gives for the mean fluctuation of this quantity a non-

zero value, which is meaningful for a body in a medium but is entirely spu-

rious for a closed system, since the energy of such a body is by definition

constant and does not fluctuate.

The possibility of applying the Gibbs distribution (in the manner described)

to closed systems is also seen from the fact that this distribution hardly differs

t To avoid misunderstanding, let us mention once more that the wn (or q) are monotonic
functions of energy and need not have maxima for E = E. It is the distribution function

with respect to energy, obtained by multiplying wn by dr(E)/dE, which has a sharp maxi-
mum at E = E.
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from the microcanonical distribution, while being very much more convenient

for practical calculations. For the microcanonical distribution is, roughly

speaking, equivalent to regarding as equally probable all microstates of the

body which correspond to a given value of its energy. The canonical distribu-

tion is **spread" over a certain range of energy values, but the width of this

range (of the order of the mean fluctuation of energy) is negligible for a

macroscopic body.

§29. The Maxwellian distribution

The energy E(p, q) in the Gibbs distribution formula of classical statistics

can always be written as the sum of two parts : the kinetic energy and the

potential energy. The first of these is a quadratic function of the momenta of

the atoms*, and the second is a function of their co-ordinates, the form of

which depends on the law of interaction between the particles within the body

(and on the external field, if any). If the kinetic and potential energies are

denoted by K(p) and U(q) respectively, then E(p, q) = K(p)+U(q), and the

probability dw = g(p, q) dp dq becomes

dw = Ae- uWTe-KWT dp dq,

i.e. is the product of two factors, one of which depends only on the co-

ordinates and the other only on the momenta. This means that the probabil-

ities for momenta (or velocities) and co-ordinates are independent, in the sense

that any particular values of the momenta do not influence the probabilities of

the various values of the co-ordinates, and vice versa. Thus the probability

of the various values of the momenta can be written

dwp = ae-WT dp, (29.1)

and the probability distribution for the co-ordinates is

dWq = be-U(q)/Tdq , (29.2)

Since the sum of the probabilities of all possible values of the momenta
must be unity (and the same applies to the co-ordinates), each of the probabil-

ities dw
p and dw

q
must be normalised, i.e. their integrals over all possible

values of the momenta and co-ordinates respectively for the body concerned

must be equal to unity. From these conditions we can determine the constants

a and b in (29.1) and (29.2).

Let us consider the probability distribution for the momenta, and once

again emphasise the very important fact that in classical statistics this distri-

bution does not depend on the nature of the interaction of particles within

t It is assumed that Cartesian co-ordinates are used.
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the system or on the nature of the external field, and so can be expressed in

a form applicable to all bodies. 1
"

The kinetic energy of the whole body is equal to the sum of the kinetic

energies of each of the atoms composing it, and the probability again falls

into a product of factors, each depending on the momenta of only one atom.

This again shows that the momentum probabilities of different atoms are

independent, i.e. the momentum ofone does not affect the probabilities of vari-

ous momenta of any other. We can therefore write the probability distri-

bution for the momenta of each atom separately.

For an atom of mass m the kinetic energy is (px
2+py

2+pz
2)/2m, wherepxt

py , pz are the Cartesian components of its momentum, and the probability

distribution is

dwp = ae-(P*8+V+Pe*)/2mT dPx dpy dpz .

The constant a is given by the normalisation condition. By means of the for-

mula

i
e-*** dx = yW«)

we find

oo oo

Hi
p— oo — oo — oo

e-<p*'+PS+p.*)/*mT

d

Px dp ^

-a e-p*/2mT dp

= a(2jtmiyiz = 1,

whence a = (2mnT)~*12
, and the momentum probability distribution takes

the final form

dW» = (2tJtT2
e-(P^P^P^^nT dPx dpy dpz . (29.3)

Changing from momenta to velocities (p = mi), we can write the corre-

sponding velocity distribution as

/ \ 3/2

dWv =
\2rfr)

e-mW+v*+v*)l2T dvx dvy dvz . (29.4)

This is the Maxwellian distribution (Maxwell 1860). It again consists of
a product of three independent factors

dWv
*
= J^f e

~mVxV2Tdv
x> • • •> (29 - 5>

each of which gives the probability distribution for a single velocity compo-
nent.

t In quantum statistics this statement is not quite true in general.
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If the body consists of molecules (e.g. a polyatomic gas), then together with

the Maxwellian distribution for the individual atoms there is a similar distri-

bution for the translational motion of each molecule as a whole: from the

kinetic energy of the molecule we can separate a term which gives the energy

of the translational motion, and so the required distribution separates in the

form (29.4), where m must now be taken as the total mass of the molecule,

and vx , vy , vz
as the velocity components of its centre of mass. It should be

emphasised that the Maxwellian distribution for the translational motion of

molecules can be valid quite independently of the nature of the motion of the

atoms within the molecule (and the rotation of the molecule), and in partic-

ular when a quantised description of the latter is necessary.*

The expression (29.4) is written in terms of Cartesian co-ordinates in

"velocity space". If we change from Cartesian to spherical polar co-ordina-

tes, the result is

(\ 3/2

™
j e-mv*/2Tv2 sin s dd d(f> dv, (29.6)

where v is the absolute magnitude of the velocity, and 6 and (f>
the polar angle

and azimuthal angle which determine the direction of the velocity. Integra-

tion with respect to angle gives the probability distribution for the absolute

magnitude of the velocity:

/ m \ 3/2

dwv = 4n j^l e
-m*'2Tv2 dv. (29.7)

It is sometimes convenient to use cylindrical co-ordinates in velocity

space. Then

(\ 3/2

™
j

e
-mW+vVt2T vr dvr dvz d(f), (29.8)

where vz
is the velocity component along the z-axis, vr the component per-

pendicular to that axis, and <j> the angle which gives the direction of this

component.

Let us calculate the mean kinetic energy of an atom. According to the defi-

nition of the mean, and using (29.5), we find for any Cartesian velocity com-

ponentt

V*
2=

J-^T
j'**'-™******

= T/m. (29.9)

t The Maxwellian distribution clearly applies also to the Brownian motion of particles

suspended in a liquid.

% For reference we shall give the values of the integrals of the form

J"^ xn
dx,
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The mean value of the kinetic energy of the atom is therefore 3T/2, or 3kT/2
when the temperature is measured in degrees. We can thus say that the mean
kinetic energy of all the particles in the body in classical statistics is always

3NT/2, whereN is the total number of atoms.

PROBLEMS

Problem 1. Find the mean value of the nth power of the absolute magnitude of the
velocity.

Solution. Using (29.7), we find

Vn = 4a I——\ e-t»vy2Tvn+2 (Jv

= J_ (2T\*I*r(n+ 3\

y/7i\m) \ 2 )'

In particular, if n is even (= 2r), then

v" = (77m)r(2r+l)!!;

if n = 2r+l, then

2 /2r\(2«,+i)/2

Problem 2. Find the mean square fluctuation of the velocity.

Solution. We have

(Jv)2 s (v-u)2 = v*-vz
.

The result of Problem 1 with n = 1 and n = 2 gives

{Avy = (T/m)0-8/n).

Problem 3. Find the mean energy, the mean square energy, and the mean square fluctua-
tion of the kinetic energy of an atom.

which often occur in applications of the Maxwellian distribution. The substitution a*2 = y
gives

7B = -£a-(»+ D/ 2 f e-9y{n-l)lt dy

= ia -(»+»)/»r (in +i),

where r(x) is the gamma function. In particular, if n — 2r with r > 0, then

J2r ~
2r+1

where (2r-l)!! = 1-3-5- . . . (2r-l). If r = 0, then

h = iV(»/«).
If n = 2r+l, then

V a2'+! *

hr+x = r !/2a' +i

The sarae integral from - oo to + oo is zero if n = 2r+ 1 and twice the integral from to
oo if « = 2r.
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Solution. From the results of Problem 1 we find

1 = % nwt = 3772,

I2 = |mV = 15T*/4,

(Je)2 = £2-e2 = 3F*/2.

Problem 4. Find the probability distribution for the kinetic energy of an atom.

Solution.

Problem 5. Find the probability distribution for the angular velocities of rotation of

molecules.

Solution. Just as for translational motion, we can write the probability distribution

for the rotation of each molecule separately (in classical statistics). The kinetic energy of

rotation of a molecule regarded as a rigid body (which is permissible, owing to the smallness

of the atomic vibrations within the molecule) is

eroi = i(W+W+W) = i (^+^+^") >

where Ilt I2 , /3 are the principal moments of inertia, Qlt Q 2 , Qz are the components of the

angular velocity along the principal axes of inertia, andMx
= IXQUM2

= 12Q 2,M3 = /^28

are the components of the angular momentum, which act as generalised momenta with

respect to the velocities Qu Q2 , Q3 . The normalised probability distribution for the

angular-momentum components is

[1 /M-, 2 M 2 M 2\1~ yT-+^r+^r)\ dM^ dM* dM*

and for the angular velocity

dwQ = (2»r)-«/»(/i/«/«) 1 /,exp [-^(/A 2+ /2i22
2+ /3^3 2

)] d0i d^2 d^3 .

Problem 6. Find the mean squares of the absolute magnitudes of the angular velocity

and angular momentum of a molecule.

Solution. The above distributions give

m 2 = r(/1+/2+/3).

§30. The probability distribution for an oscillator

Let us consider a body whose atoms are executing small oscillations about

some equilibrium positions. They may be atoms in a crystal or in a gas mole-

cule; in the latter case the motion of the molecule as a whole does not affect

the oscillations of the atoms within it and so does not influence the results.

As we know from mechanics, the Hamiltonian (the energy) of a system

consisting of an arbitrary number of particles executing small oscillations can
be written as a sum

:
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where qa are what are called the normal co-ordinates of the oscillations (equal

to zero at points of equilibrium), pa = qx are the corresponding generalised

momenta, and coa are the oscillation frequencies. In other words, E(p, q) is

a sum of independent terms, each corresponding to a separate normal oscil-

lation (or, as we say, to an oscillator). In quantum mechanics the same is true

of the Hamiltonian operator of the system, so that each oscillator is indepen-

dently quantised and the energy levels of the system are given by the sums

£&»«(/!«+ -§-),

a

the na being integers.

As a result of these facts the Gibbs distribution for the whole system is a

product of independent factors, each giving the statistical distribution for a

separate oscillator. In consequence we shall consider a single oscillator in

what follows.

Let us determine the probability distribution for the co-ordinate q of an
oscillator*; the suffix a which gives the number of the oscillator will be omit-

ted henceforward. In classical statistics the solution to this problem would be

very simple : since the potential energy of the oscillator is \co2
q
2
, the probabil-

ity distribution is

dw
q
= Ae—WI" dq,

or, determining A from the normalisation condition,

d"« =v^ e_"''"!rd<?; (301)

the integration with respect to q may be taken from — °° to + «>, since the

integral is rapidly convergent.

Let us now consider the solution of this problem in the quantum case. Let

y*n(q) be the wave functions of the stationary states of the oscillator, corre-

sponding to the energy levels

en - fico(n+ $).

If the oscillator is in the nth state, the quantum probability distribution

for its co-ordinate is given by tpl (in the present case the functions yn are real,

and so we write simply \p\ instead of the squared modulus fyn |

2
). The required

statistical probability distribution is obtained by multiplying ip* by the proba-

bility wn of finding the oscillator in the nth state, and then summing over all

possible states.

According to the Gibbs distribution,

w„ = ae -e./T_

t The normal co-ordinate has the dimensions cm-g1/2
.
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where a is a constant. Thus we have the formula

oo

dw
q
= a dq £ e—-/r^a,

(30 2)

which is, of course, entirely in agreement with the general formula (5.8).
To calculate the sum, we can proceed as follows. With the notation dw =

Qq dq, we form the derivative

dq r^o
Vn dq

Using the momentum operator p = -ih d/dq and the fact that the oscillator
momentum has non-zero matrix elements1 only for transitions with n — n± 1,

we can write

dwn i ~

-df
=

*™
i ,

-
-ft

KPn-l, nWn-l+Pn+1, nWn+l)

CO

= -£ Wn-l, nWn-l-qn+l, nWn+l)-

Here we have used the relations

/?„_!, n = -i0>qn -x, n , Pn+1, n = "»?n +i, n

between the momentum and co-ordinate matrix elements. Thus

do
q 2aco [

~

£ ?n+l, nH>nVn + ie-
e*IT

\ ,

ion suffix from nton+1

sn+i = en+ hco, n+1 n = gr
n> n+1> q_ x

= 0,

obtaining

d@a loco ,
°°

"d7
=
-~T (l ~ e

~ na>/T)^^n+ lW-nV>n+ie-^T.

In an exactly similar manner we can prove that

qQq = a{\ +«-«-/T) | gn n+lWn+le-,(
/r

n=o

A comparison of the two equations gives

dQ
g /2ft) fc»\^=-(_tanh-j^,

t See Quantum Mechanics, §23.

In the first sum we change the summation suffix from n to #i+ 1 and use the
relations

D
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whence
!.C0 , hco\— z ^rtanh yf\

Determining the constant from the normalisation condition, we finally obtain

the formula

[co , hco\ 112 f O co M . hco\ , ... „
dvV

« = (^
tanh

2f)
6XP \- q J tanh

2TJ
d* (30>3)

(F. Bloch 1932). Thus in the quantum case also the probabilities of various

values of the co-ordinate of an oscillator are distributed according to a law

of the form exp (— <x.q
2
), but the coefficient a differs from that in the classical

case. In the limit hco <s: T, where the quantisation is unimportant, formula

(30.3) becomes (30.1), as we should expect.

In the opposite limiting case hco » T, formula (30.3) becomes

dw
q
= ^ exp (- q

2(o/n) dq,

i.e. the purely quantum probability distribution for the co-ordinate in the

ground state of the oscillator. 1" This corresponds to the fact that when

T<szfico the oscillations are hardly excited at all.

The probability distribution for the momentum of the oscillator can be

written by analogy with (30.3) without repeating the calculation. The reason

is that the problem of quantisation of the oscillator is completely symmetrical

as regards the co-ordinate and the momentum, and the oscillator wave func-

tions in the p representation are the same as its ordinary co-ordinate wave

functions (q being replaced by p/co)J The required distribution is therefore

M^^H-^^W (3a4)

In the limit of classical mechanics (hco <sz T) this becomes the usual Maxwel-

lian distribution

:

dwp = (27rr)- 1/2e-P*/2T dp. (30.5)

§31. The free energy in the Gibbs distribution

According to formula (7.9) the entropy of a body can be calculated as the

mean logarithm of its distribution function:

S = — log wn .

Substituting the Gibbs distribution (28.3) gives

S = - log A +EJT,

t This is the squared modulus of the wave function of the ground state of the oscillator.

t See Quantum Mechanics, §23, Problem 1.
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whence log A = (E— TS)/T. But the mean energy E is just what is meant by

the term "energy" in thermodynamics; hence E—TS = F and log A = F/T,

i.e. the normalisation constant of the distribution is directly related to the free

energy of the body.

Thus the Gibbs distribution may be written in the form

Wn = JF-BJIT,
(31>1)

and this is the form most frequently used. The same method gives in the clas-

sical case, using (7.12), the expression

Q = (2nh)-»4F-Eto'tiyT . (31.2)

The normalisation condition for the distribution (31.1) is

n n

whence

e-FIT - ^ e-£H /T
>

n

or, taking logarithms,

F= -TlogYe-E*'T
. (31.3)

n

This formula is fundamental in thermodynamic applications of the Gibbs

distribution. It affords, in principle, the possibility of calculating the thermo-

dynamic functions for any body whose energy spectrum is known.

The sum in the logarithm in (31.3) is usually called the partition function

(or sum over states). It is just the trace of the operator exp (— ft/T), where ft

is the Hamiltonian ofthe body*:

Z = £ e-E*lT = tr exp (-H/T). (31.4)
n

This notation has the advantage that any complete set of wave functions may
be used in order to calculate the trace.

A similar formula in classical statistics is obtained from the normalisation

condition for the distribution (31.2). First of all, however, we must take ac-

count of the following fact, which was unimportant so long as we were discus-

sing the distribution function as such and not relating the normalisation

coefficient to a particular quantitative property of the body, viz. its free

energy. If, for example, two identical atoms change places, then afterwards

the microstate of the body is represented by a different phase point, obtained

from the original one by replacing the co-ordinates and momenta of one atom
by those of the other. On the other hand, since the interchanged atoms are

identical, the two states of the body are physically identical. Thus a number of

points in phase space correspond to one physical microstate of the body.

In integrating the distribution (31.2), however, each state must of course be

tin accordance with the general rules, exp (-H/T) denotes an operator whose eigen-

functions are the same as those of the operator H and whose eigenvalues are e~'nlT.
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taken only once.* In other words, we must integrate only over those regions

of phase space which correspond to physically different states of the body.

This will be denoted by a prime to the integral sign.

Thus we have the formula

F= -Tlog fe-fi(p.9)/Tdr; (31.5)

'

here and in all similar cases below, dr denotes the volume element in phase

space divided by (Infi)
8

:

dr = dpdq\{2jih)K (31.6)

Thus the partition function in the quantum formula (31.3) becomes an inte-

gral over states. As already mentioned in §29, the classical energy E(p, q) can

always be written as the sum of the kinetic energy K(p) and the potential

energy U(q). The kinetic energy is a quadratic function of the momenta, and

the integration with respect to the latter can be effected in a general form.

The problem of calculating the partition function therefore actually reduces

to that of integrating the function e~ mq)IT with respect to the co-ordinates.

In the practical calculation of the partition function it is usually convenient

to extend the region of integration and include an appropriate correction

factor. For example, let us consider a gas ofN identical atoms. Then we can

integrate with respect to the co-ordinates of each atom separately, extending

the integration over the whole volume occupied by the gas; but the result

must be divided by the number of possible permutations ofN atoms, which

is N\. In other words, the integral /' can be replaced by the integral over all

phase space, divided byN !

:

\'-- dr = mj-- dr - (3L7)

Similarly, it is convenient to extend the region ofintegration for a gas consist-

ing of N identical molecules : the integration with respect to the co-ordinates

of each molecule as a whole (i.e. the co-ordinates of its centre of mass) is

carried out independently over the whole volume, whilst that with respect

to the co-ordinates of the atoms within the molecule is carried out over the

"volume" belonging to each molecule (i.e. over a small region in which there

is an appreciable probability of finding the atoms forming the molecule).

Then the integral must again be divided by N\.

t This becomes particularly evident if we consider the classical partition function (integral

over states) as the limit of the quantum partition function. In the latter the summation is

over all the different quantum states, and there is no problem (remembering that, because

of the principle of symmetry of wave functions in quantum mechanics, the quantum state

is unaffected by interchanges of identical particles).

From the purely classical viewpoint the need for this interpretation of the statistical

integration arises because otherwise the statistical weight would no longer be multiplicative,

and so the entropy and the other thermodynamic quantities would no longer be additive.
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PROBLEMS
Problem 1. The potential energy of the interaction between the particles in a body is a

homogeneous function of degree n in their co-ordinates. Using similarity arguments, deter-
mine the form of the free energy of such a body in classical statistics.

Solution. In the partition function

Z=\ e-lxlp > + ui*MT dT
t

we replace each q by Xq and each p by Xnltp, where A is an arbitrary constant. If at the
same time we replace T by AT, the integrand is unchanged, but the limits of integration
with respect to the co-ordinates are altered: the linear size of the region of integration is

multiplied by 1/A, and so the volume is multiplied by 1/A3 . In order to restore the limits
of integration, we must therefore at the same time replace V by XZ V. The result of these
changes is to multiply the integral by A3 -Y<1+n/2

> because of the change of variables in
&r(s = 3N co-ordinates and the same number of momenta,N being the number of particles
in the body). Thus we conclude that the substitutions V -* X3 V, T -* AT give

Z -* }?m\+*mz.

The most general form of function Z(V, T) having this property is

Z = ra-^ci/t-ri/n)/(FT-3'"),

where /is an arbitrary function of one variable.

Hence we find for the free energy an expression of the form

F= -3(|+1 ln)NT log T+ NTcfriVT~ 3i*JN), (1)

which involves only one unknown function of one variable; the number N is included in
the second term in (1) so that F shall have the necessary property of additivity.

Problem 2. Derive the virial theorem for a macroscopic body for which the potential
energy of interaction of the particles is a homogeneous function of degree n in their co-
ordinates.

Solution. Following the derivation of the virial theorem in mechanicst , we calculate
the time derivative of the sum ]£r«p, where r and p are the radius vectors and momenta of
the particles in the body. Since r = 9AT(p)/6p and K(p) is a homogeneous function of degree
two in the momenta, we have

The particles in the body execute a motion in a finite region of space with velocities which
do not become infinite.The quantity £r»p is therefore bounded and the mean value of its

time derivative is zero, so that

2tf+£r.p = 0,

where K = K(p). The derivatives p are determined by the forces acting on the particles in
the body. In summing over all particles we must take into account not only the forces of
interaction between the particles but also the forces exerted on the surface of the body by
surrounding bodies:

5>P = ~I>^^-^(j)»df = -nU-3PV;

the surface integral is transformed to a volume integral and we use the fact that div r = 3.
Thus we have 2K-nU-3PV = or, in terms of the total energy E = U+K,

{n+ 2)K = nE+ 3P V. (2)

t See Mechanics, §10.
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This is the required theorem. It is valid in both classical and quantum theory. In the

classical case, the mean kinetic energy K = 3NT/2, and (2) gives

E+(3/n)PV = 3Q+ 1 lri)NT. (3)

This formula could also be derived from the expression (1) for the free energy (Problem 1).

When the particles interact by Coulomb's law (« = - 1), we have from (2)

K= -E+3PV.

This is the limiting case of the relativistic relationt

E- 3PV = £ mc2 V(l -t>2 /c2),

in which the energy E includes the rest energy of the particles in the body.

§32. Thermodynamic perturbation theory

In the actual calculation of thermodynamic quantities there occur cases

where the energy E(p, q) of a body contains relatively small terms which may

be neglected to a first approximation. These may be, for instance, the poten-

tial energy of the particles of the body in an external field. The conditions

under which such terms may be regarded as small are discussed below.

In these cases a kind of "perturbation theory" may be constructed for the

calculation of the thermodynamic quantities (R. E. Peierls 1932). We shall

first show how this is to be done when the classical Gibbs distribution is

applicable.

We write the energy E(p, q) in the form

E(p,q)=E (p,q)+V(j>,q), (32.1)

where V represents the small terms. To calculate the free energy of the body,

we put

e-FIT _ l' e-[Eo(P,Q)+V(p,q)]IT df

^ JVso/^i_^ +J^aT; (32.2)

in the expansion in powers of V we shall always omit terms above the second

order, in order to calculate the corrections only to the first and second orders

of approximation. Taking logarithms and again expanding in series, we have

to the same accuracy

F = FQ+ I" (V-^) e^o-Eo(P,<MlT dr+

+ j_ r r Ke^o-^p. «>]/t dr l

,

where F denotes the "unperturbed" free energy, calculated for V = 0.

t See The Classical Theory of Fields, §35.
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The resulting integrals are the mean values of the corresponding quantities

over the "unperturbed" Gibbs distribution. Denoting this averaging by a bar

and noticing that V2- F2 = (V- Vf, we have finally

F = F + V-~{V-Vf. (32.3)

Thus the first-order correction to the free energy is just the mean value of

the energy perturbation V. The second-order correction is always negative,

and is determined by the mean square of the deviation of V from its mean
value. In particular, if the mean value V is zero, the perturbation reduces the

free energy.

A comparison of the terms of the second and first orders in (32.3) enables

us to ascertain the condition for this perturbation method to be applicable.

Here it must be remembered that both the mean value Kand the mean square

(V- V)2 are roughly proportional to the number of particles; cf. the discus-

sion in §2 concerning r.m.s. fluctuations of the thermodynamic quantities for

macroscopic bodies. We can therefore formulate the desired condition by
requiring that the perturbation energy per particle should be small in compa-
rison with r(or with kT, if the temperature is measured in degrees). 1

"

Let us now carry out the corresponding calculations for the quantum case.

Instead of (32.1) we must now use the analogous expression for the Hamilto-

nian operator:

H = HQ+ V.

According to the quantum perturbation theory, the energy levels of the per-

turbed system are given, correct to the second-order terms, by*

E„ = gn<o>+r„n+ £'
|^/ (0)

, (32.4)

where the En(0) are the unperturbed energy levels (assumed non-degenerate);
the prime to the sum signifies that the term with m = n must be omitted.

This expression is to be substituted in the formula

e-FIT = £ e-EJT

t In expanding the integrand in (32.2) we have, strictly speaking, expanded in terms of
a quantity V/T, which is proportional to the number of particles and is therefore certainly
not small, but the further expansion of the logarithm causes the large terms to cancel, and
so a series in powers of a small quantity is obtained.

t See Quantum Mechanics, §38.
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and expanded in the same way as above. We thus easily obtain

n n m ^n ±-"m

~Yf ? F»»2W»+^ % VnnWn)\ (32.5)

where wn = exp [(F —

E

n
{0))jT] is the unperturbed Gibbs distribution.

The diagonal matrix element Vnn is just the mean value of the perturbation

energy Kin the given («th) quantum state. The sum

Z Vnn™n
n

is therefore the value of V averaged both over the quantum state of the body

and over the ("unperturbed") statistical distribution with respect to the vari-

ous quantum states. We denote this averaging by a bar and find that the cor-

rection to the free energy in the first-order approximation is V, formally the

same as the classical result above.

Formula (32.5) may be rewritten as

F = F + Vnn-\ I £' I

V™}^~^ ~~ Wnn-Vnnf. (32.6)

All the second-order terms in this expression are negative, since wm— wn has

the same sign as Enw-E^0)
. Thus the correction to the free energy in the

second-order approximation is negative in the quantum case also.

As in the classical case, the condition for this method to be applicable is

that the perturbation energy per particle should be small compared with T.

On the other hand, the condition for the applicability of the ordinary quan-

tum perturbation theory (leading to the expression (32.4) for En) is, as we

know, that the matrix elements of the perturbation should be small compared

with the separations of the corresponding energy levels; roughly speaking,

the perturbation energy must be small compared with the separations of the

energy levels between which allowed transitions can take placed

These two conditions are not the same, since the temperature is unrelated

to the energy levels of the body. It may happen that the perturbation energy is

small compared with T, but is not small, or indeed is even large, compared

with the significant separations between energy levels. In such cases the "per-

turbation theory" for thermodynamic quantities, i.e. formula (32.6), will be

applicable while the perturbation theory for the energy levels themselves, i.e.

formula (32.4), is not; that is, the limits of convergence of the expansion rep-

resented by formula (32.6) may be wider than those of (32.4), from which

the former expansion has been derived.

t These are in general the transitions in which the states of only a small number of

particles in the body are changed.
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The converse case is, of course, also possible (at sufficiently low tempera-

tures).

Formula (32.6) is considerably simplified if not only the perturbation

energy but also the differences between energy levels are small in comparison

with T. Expanding the difference wm— wn in (32.6) in powers of (En
(0)—Em (0))ITy

we find in this case

1

** **0 ' *nn ^y \2j I
'nm\ i~\^na "tin) /•

Li m

The rule of matrix multiplication gives

/ ,
I

' nm
I

i " nn 2^ |
' nm I 2-i nm' mn V' )nn>

m mm
and we obtain an expression which is formally exactly the same as formula

(32.3). Thus in this case the quantum formula is in formal agreement with the

classical formula.

§33. Expansion in powers of h

Formula (31.5) is essentially the first and principal term in an expansion of

the quantum formula (31.3) for the free energy in powers of h in the quasi-

classical case. It is of considerable interest to derive the next non-vanishing

term in this expansion (Wigner, Uhlenbeck and Gropper 1932).

The problem of calculating the free energy amounts to that of calculating

the partition function. For this purpose we use the fact that the latter is the

trace of the operator exp (— j8/7) (see (31.4)), with the notation (i = l/T in

order to simplify the writing of the involved expressions which appear below.

The trace of an operator may be calculated by means of any complete set of

orthonormal wave functions. For these it is convenient to use the wave func-

tions of free motion of a system ofN non-interacting particles in a large but

finite volume V. These functions are

Vp = ~7Vn exP KW Z Ptfil (33 - !)
V v

i

where the qi
are the Cartesian co-ordinates of the particles and the pi

the

corresponding momenta, labelled by the suffix /, which takes the values

1,2, . .
.
, s, where s = 3N is the number of degrees of freedom of the system

ofN particles.

The subsequent calculations apply equally to systems containing identical

particles (atoms) and to those where the particles are different. In order to

allow in a general manner for a possible difference between the particles, we
shall add to the particle mass a suffix indicating the degree of freedom : m

t
.

Of course the three m
i
corresponding to any one particle are always equal.
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The existence of identical particles in a body means that, in the quantum

theory, exchange effects must be taken into account. This means, first of all,

that the wave functions (33.1) must be made symmetrical or antisymmetrical

in the particle co-ordinates, depending on the statistics obeyed by the parti-

cles. It is found, however, that this effect leads only to exponentially small

terms in the free energy, and so is of no interest. Secondly, the identity of par-

ticles in quantum mechanics affects the manner in which the summation over

different values of the particle momenta must be carried out. We shall meet

this later, for example in calculating statistical sums for an ideal quantum

gas. The effect produces a term of the third order in h in the free energy (as

shown later) and so again does not affect the terms of order h2 which we shall

calculate here. Thus the exchange effects can be ignored in the calculation.

In each of the wave functions (33.1) the momenta/^ have definite constant

values. The possible values of each pt
form a dense discrete set (the distances

between neighbouring values being inversely proportional to the linear dimen-

sions of the volume occupied by the system*). The summation of the matrix

elements exp (— /?#)pp with respect to all possible values of the momenta may
therefore be replaced by integration with respect to p(dp = dpi dp2 . . .dps),

bearing in mind that the number of quantum states "belonging" to the volume

VN dp of phase space (all values of the co-ordinates of each particle in the

volume Fand values of the momenta in dp) is

V" dpIQjih)8
.

We shall use the notation

/ = exp [- (i/«) £ Piqi ] exp (-/?£) exp [(//*) £ Piq& (33.2)
i i

The required matrix elements are obtained by integrating with respect to all

the co-ordinates:

1

yNexp {-$H)VP = Idq. (33.3)

The partition function is then obtained by integration with respect to the

momenta.

Altogether, therefore, we must integrate / over all phase space, or more

precisely over those of its regions which correspond to physically different

states of the body, as explained in §31. This is again denoted by a prime to

the integral sign:

(33.4)Z = £e-^„ = f /dr.

t See Quantum Mechanics, §22.
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Let us first calculate / by means of the following procedure. We take the

derivative

go = - exp [-(//«) £ PiqiW {exp [(///*) £ />i?i]/},

and expand the right-hand side, using the explicit expression for the Hamilto-

nianof the body:

*-$£
t

+v --*»zi£?+o-
(335)

where U = U(gi, q*,..., qs)
is the potential energy of interaction between all

particles in the body. By means of (33.5) we obtain after a straightforward

calculation the following equation for /:

9/5

where

E(p>d = X§^+ u (33 -6)

is the usual classical expression for the energy of the body.

This equation is to be solved with the obvious condition that / = 1 when

fi
= 0. The substitution

/= e-fl?<P'«>X (33.7)

gives

_ 2^ ™
+ *t]

(33.8)
3tft 3?i 3&2

J

with the boundary condition % = 1 for/5 = 0.

In order to obtain an expansion in powers of h, we solve equation (33.8)

by successive approximations, putting

%= l+nXi+fi2X2+..; (33.9)

with jfi = 0, %2 = 0, . . . for ft
= 0. Substituting this expansion in equation

(33.8) and separating terms in different powers of h, we obtain the equations

?Zi_ .-or Pi 9C/

3*

o%i_ _iayPi_ ^a
d0 P2

tmi-dqC
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The first equation gives xu and then the second equation gives %%. A simple

calculation leads to the results

v
l WV Pi dUW * 8*VV Pi Pk &U

,

(33 ' 10)

*2
8
P

\f m, a^j
+

6
P
f £«< m

ft 8^8^
+

The required partition function (33.4) is

Z=[ (l+«Xi+ «2
X2)e-'£(p '«> dr. (33.11)

The term of the first order in h in this integral is easily seen to be zero, since

the integrand %ie~PE{p ' q) in that term is an odd function of the momenta
(E(p, q) being quadratic in the momenta and %i, by (33.10), linear), and so

the result on integrating with respect to momenta is zero. Thus we can write

(33.11) as

Z = (l+«2
zi) (V^(p.9>dr,

where X2 is the value of %2 averaged over the classical Gibbs distribution

:

X2e-PE(p,Q)dr

12 =

f
e-PE(v,q)&r

Substituting this expression for the partition function in formula (31.3), we
have for the free energy

F=Fcl
-ilog(l+**j£),

or, to the same accuracy,

F=Fci-#X*IP- (33.12)

Here F
cl
denotes the expression for the free energy in classical statistics (for-

mula (31.5)).

Thus the next term after the classical expression in the expansion of the

free energy is of the second order in h. This is not accidental: in equation

(33.8), solved here by the method of successive approximations, the quantum

constant appears only as ifi, and so the resulting expansion is one in powers

of ih ; but the free energy, being a real quantity, can contain only powers of

ih which are real. Thus this expansion of the free energy (ignoring exchange

effects) is an expansion in even powers of h.
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It remains to calculate the mean value %%• We nave seen in §29 tnat in cias"

sical statistics the probability distributions for the co-ordinates and momenta

are independent. The averaging over momenta and over co-ordinates can

therefore be made separately.

The mean value of the product of two different momenta is clearly zero:

p~p~
k
= pr

p~
h
= 0. The mean value of the square pt

2
is mjp. We can therefore

write

PiPk = (mi/p)dik ,

where d
ih
- 1 for i = k and for i ^ k. Having averaged with respect to

momenta by means of this formula, we obtain

72 _ tylW]
2_Ky J_ TE

m (33.13)

The two terms here may be combined, since the mean values are related by

the formula

TO— B PHY (33.14)

This is easily seen by noticing that

}w m -"-3
?r '"j

w

The first term on the right-hand side gives only a surface effect in d*U/dq?,

and since the body is macroscopic this effect may be neglected in comparison

with the second term.

Substituting the resulting expression for %i in formula (33.12), and replac-

ing j8 by 1/r, we find the following final expression for the free energy:

We see that the correction to the classical value is always positive, and is

determined by the mean squares of the forces acting on the particles. This

correction decreases with increasing particle mass and increasing tempera-

ture.

According to the above discussion, the next term in the expansion given here

would be of the fourth order. This enables us to calculate quite independently

the term of order h3 which occurs in the free energy because of the peculiar-

ities of the summation over momenta resulting from the identity of particles

in quantum mechanics. The term in question is formally the same as the cor-

rection term which appears in a similar calculation for an ideal gas, and is

given by formula (55.14):

jt3/2 NW
(33 l6)
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for a body consisting of TV identical particles. The upper sign applies for Fermi

statistics and the lower sign for Bose statistics ; g is the total degree of degen-

eracy with respect to the directions of the electron and nuclear angular

momenta.

From these formulae we can also obtain the correction terms in the proba-

bility distribution functions for the co-ordinates and momenta of the atoms
of the body. According to the general results in §5, the momentum probabil-

ity distribution is given by the integral of / with respect to q (see (5.10)):

dvt>p = constant Xdp I dq.

The term ^ xe~
PE{,p ' q) in /contains a total derivative with respect to the co-

ordinates, and the integral of it gives a surface effect which can be neglected.

Thus we have

dwp = constantXexpZ-zSj/^mAd/? (l + /i
2
](2)r^d?.

The third and fourth terms in the expression (33.10) for %2 give a small con-

stant (not involving the momenta) on integration, and this can be neglected in

the same approximation. Taking out also the factor \e~^u dq and including

it in the constant coefficient, we have

dwp = constantXexp/-/3X/'iV2mi\fl-^4
4

IS^^-|^f-+

6 i ftWfmft dqidqh ]

The mean values which appear here are related by

d2U = dU W_
dqidqh dqt dqk

similarly to (33.14). Hence

dwp = conStantXexp/-^I^/2m
i
Jl+^

4

Sl£l^ §^1 o>
\ T /L 24 * ft

m
i
mh dq

{
dqk ]

(33.17)

This expression can be conveniently rewritten in the following final form:

d„p = consta„,Xexp{-lfl|il- *1EE^ |^1U, (33.18)
[ Tli Irrii 24T3

i ^ mimh dq
t
dqh ]\

the bracket in (33.17) being replaced by an exponential function to the same
degree of accuracy.

Thus we see that the correction to the classical distribution function for

the momenta is equivalent to adding to the kinetic energy in the exponent an
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expression quadratic in the momenta, with coefficients depending on the law

of interaction between the particles in the body.

If it is desired to find the probability distribution for any one momentum

pit then (33.17) must be integrated with respect to all the other momenta. All

the terms involving the squares pf (k ^ i) will then give constants negligible

compared with unity, while the terms containing products of different

momenta give zero. The result is, again in exponential form,

<"*» = constantXe*p{"AI1-!^Q 2

]} <ta- (33-19)

Thus the distribution obtained differs from the Maxwellian only in that the

true temperature Tis replaced by a somewhat higher "effective temperature"

:

dwPi
= constantXexp{—p^\2m^T^ dpit

where

/i
2

r«ff = t+
/duy

eff t UT2m

Similarly we can calculate the corrected co-ordinate distribution function

by integrating /with respect to the momenta

:

dw
q
= constantXd^ j

I dp

The same calculations as led to (33.13) give

dw
q
= constantXe-/3U

or, in exponential form

dw
q
= constantX

f lf„ ft
2 ^ 1 /9£A 2 h2 „ 1 92 C/ll .

(33.20)

§34. The Gibbs distribution for rotating bodies

The problem of the thermodynamic relations for rotating bodies has already

been considered in §26. Let us now see how the Gibbs distribution is to be

formulated for rotating bodies. This will complete the investigation of their

statistical properties. As regards the uniform translational motion, Galileo's

relativity principle shows that, as already mentioned in §26, this motion has

only a trivial effect on the statistical properties and so needs no special consid-

eration.

In a system of co-ordinates rotating with the body, the usual Gibbs distri-

bution is valid ; in classical statistics,

o = (27r#)- se[F
'-E '

(p '
9)]/T

, (34.1)
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where E'(p
t q) is the energy of the body in this system, as a function of the

co-ordinates and momenta of its particles, and F' the free energy in the same
system (which, of course, is not the same as the free energy of the body when
at rest). The energy E'(p, q) is related to the energy E(p, q) in a fixed system by

E'(p, q) = E(p, q)-D.M(p, q), (34.2)

where/? is the angular velocity of rotation and M(p, q) the angular momentum
of the body (see §26). Substituting (34.2) in (34.1), we find the Gibbs distri-

bution for a rotating body in the form*

q = (2nfi)- selF"-E(p>tf+&-M(p<<iMT
. (34.3)

In classical statistics the Gibbs distribution for a rotating body can also

be represented in another form. To obtain this, we use the following express-

ion for the energy of the body in the rotating co-ordinate system:

E' = £ imv'2-i 5>(£Xr)2+ ^ (34 4)

where the v' are the velocities of the particles relative to the rotating system,

and the r their radius vectors, t Denoting by

£o(v',r) = Ximv'2+£/ (34.5)

the part of the energy which is independent of Q, we obtain the Gibbs distri-

bution in the form

q = (27r/0-*exp jy [F'-Eoiy\ r)+ i£ m(QX r)2]|.

The function q determines the probability corresponding to the element

of phase space Axx dy x dz x . . . dp''^dp'

\

y
dp'

'

u . . ., where p' = mv'+mQXr.t
Since, in obtaining the differentials of the momenta, we must regard the co-

ordinates as constant, dp' = m dv', and the probability distribution expressed

in terms of the co-ordinates and velocities of the particle is

dw=Cexp|^-i[£o(v',r)-Sim(^Xr)2]|x

Xd*i dji dzi . . . dv'lx dv\y dv'lz . . ., (34.6)

where C denotes for brevity the factor (2jifi)~
s together with the product of

the particle masses which appears when we go from the momentum differen-

tials to the velocity differentials.

For a body at rest we have

dw = Ce rF-£o(v, r)]/r dxi dyi dzi dVix dViy dv^ ^ (34 7)

t The distribution (34.3), like the ordinary Gibbs distribution, is fully in agreement with
the result (4.2) derived in §4 from Liouville's theorem: the logarithm of the distribution

function is a linear function of the energy and angular momentum of the body.

t See Mechanics, §39.
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with the same expression (34.5) for 2so(v, r), now a function of the velocities in

the fixed co-ordinate system. Thus we see that the Gibbs distribution for the

co-ordinates and velocities for a rotating body differs from that for a body at

rest only by the additional potential energy —££m(£Xr)2
. In other words, as

regards the statistical properties of the body, the rotation is equivalent to the

existence of an external field corresponding to the centrifugal force. The sta-

tistical properties are not affected by the Coriolis force.

It should be emphasised, however, that this last result applies only to clas-

sical statistics. In the quantum case the expression

w = exp [{F'-H+Q.M)IT] (34.8)

gives the statistical operator corresponding to (34.3) for a rotating body.

Formally we can reduce this operator to a form analogous to (34.6), the veloc-

ities v' being replaced by the operators' = p'/m— i2Xr, but the components

of this vector operator do not commute, unlike those of the operator v in the

fixed system. The statistical operators corresponding to the expressions

(34.6) and (34.7) will therefore in general be markedly different from each

other, quite apart from the fact that one of them contains the centrifugal

energy.

§35. The Gibbs distribution for a variable number of particles

So far we have always tacitly assumed that the number of particles in a body

is some given constant, and have deliberately passed over the fact that in

reality particles may be exchanged between different subsystems. In other

words, the number N of particles in a subsystem will necessarily fluctuate

about its mean value. In order to formulate precisely what we mean by the

number of particles, we shall use the term subsystem to refer to a part of the sys-

tem which is enclosed in a fixed volume. Then N will denote the number of

particles within that volume.*

Thus the problem arises of generalising the Gibbs distribution to bodies

with a variable number of particles. Here we shall write the formulae for

bodies consisting of identical particles; the further generalisation to sys-

tems containing different particles is obvious (§86).

The distribution function now depends not only on the energy of the quan-

tum state but also on the number N of particles in the body, and the energy

levels EnN are of course themselves different for different N (as indicated by

the suffix N). The probability that the body contains N particles and is in the

«th state will be denoted by wnN.

tin deriving the Gibbs distribution in §28 we have in essence already understood sub-

systems in this sense; in going from (28.2) to (28.3) we differentiated the entropy whilst

regarding the volume of the body (and therefore of the medium) as constant.
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The form of this function can be determined in exactly the same way as the

function wn in §28. The only difference is that the entropy of the medium is

now a function not only of its energy E' but also of the number N' of particles

in it: S' = S'(E', N'). Writing E' = Ew-EnN and N' = Nw-N (where N is

the number of particles in the body, and JV(0) the given total number of par-

ticles in the entire closed system, which is large compared with N), we have in

accordance with (28.2)

wnN = constant Xexp {S'(E (0)~EnN , N C0) -N)};

the quantity AE' is regarded as constant, as in §28.

Next, we expand S' in powers of EnN and N, again taking only the linear

terms. Equation (24.5), in the form

shows that (dS/dE)v>N = l/T, (dS/dN)E , v = -/*/T. Hence

S'(E™-EnN,N«»-N) ~ S'(E<°>, JV<o>)_^ +^ }

the chemical potential [i (and the temperature) being the same for the body

and the medium, from the conditions of equilibrium.

Thus we obtain for the distribution function the expression

wnN = Ae("N-Enx)/T. (35.1)

The normalisation constant A can be expressed in terms of the thermody-

namic quantities in the same way as in §31. The entropy of the body is

S = -log wnN = - log A-^jr+-,

and so

Tlog^ = E-TS-(iN.

But E—TS = F, and the difference F—fiN is the thermodynamic potential Q.

Thus riog A = Q, and (35.1) may be rewritten as

WnN = e(0+MN-EnN)IT^ (35-2)

This is the final formula for the Gibbs distribution for a variable number of

particles.

The normalisation condition for the distribution (35.2) requires that the

result of summing the wnN first over all quantum states (for a given N) and

then over all values ofN should be equal to unity

:

E£ v^n = e^T^e^/T^e-^n) = 1.

N n N n

Hence we obtain the following expression for the thermodynamic potential Q :

Q = -T log J [^/^r^/T], (35.3)
N n
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This formula together with (31.3) can be used to alculate the thermodynamic

quantities for specific bodies. Formula (31.3) gives the free energy of the body

as a function of T, N and V, and (35.3) gives the potential Q as a function of

T, fi and V.

In classical statistics the probability distribution has the form

dwN = oN dpW) dqW,

where

oN = {2nh)-^0+"N-E^,q)VT
, (35.4)

The variable JV is written as a subscript to the distribution function, and the

same letter is written as a superscript to the element of phase volume in order

to emphasise that a different phase space (of 2s dimensions) corresponds to

each value ofN. The formula forQ correspondingly becomes

Q = -J log {^ywr f e-Es(p,q)iT drN y (35 5y

Finally, we may say a few words concerning the relation between the Gibbs

distribution (35.2) for a variable number of particles derived here and the

previous distribution (31.1). First of all, it is clear that, for the determination

of all the statistical properties of the body except the fluctuations of the total

number of particles in it, these two distributions are entirely equivalent. On
neglecting the fluctuations of the number N, we obtain Q+fiN = F, and the

distribution (35.2) is identical with (31.1).

The relation between the distributions (31.1) and (35.2) is to a certain extent

analogous to that between the microcanonical and canonical distributions.

The description of a system by means of the microcanonical distribution is

equivalent to neglecting the fluctuations of its total energy; the canonical

distribution in its usual form (31.1) takes into account these fluctuations. The
latter form in turn neglects the fluctuations in the number of particles, and
may be said to be "microcanonical with respect to the number of particles"

;

the distribution (35.2) is "canonical" with respect to both the energy and
the number of particles.

Thus all three distributions, the microcanonical and the two forms of the

Gibbs distribution, are in principle suitable for determining the thermo-
dynamic properties of the body. The only difference from this point of view
lies in the degree of mathematical convenience. In practice the microcanonical

distribution is the least convenient and is never used for this purpose. The
Gibbs distribution for a variable number of particles is usually the most con-
venient.
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§36. The derivation of the thermodynamic relations from the Gibbs distribution

The Gibbs distribution plays a fundamental part throughout statistical phys-

ics. We shall therefore give here another justification of it. This distribution

has essentially been derived in §4 and 6 directly from Liouville's theorem.

We have seen that the application of Liouville's theorem (together with

considerations of the multiplicativity of distribution functions for subsystems)

enables us to deduce that the logarithm of the distribution function of a sub-

system must be a linear function of its energy

:

log wB = a+/SE„, (36.1)

the coefficients /S being the same for all subsystems in a given closed system

(see (6.4), and the corresponding relation (4.5) for the classical case). Hence

using the purely formal notation fi
= — l/T, a = F/T, we have an expression

of the same form as the Gibbs distribution (31.1). It remains to show that the

fundamental thermodynamic relations can be derived from the Gibbs distri-

bution itself, i.e. in a purely statistical manner.

We have already seen that the quantity /?, and therefore T, must be the same

for all parts of a system in equilibrium. It is also evident that /? < 0, i.e.

T =>- 0, since otherwise the normalisation sum £wn must diverge: owing to

the presence of the kinetic energy of the particles, the energy En can take

arbitrarily large values. All these properties agree with the fundamental prop-

erties of the thermodynamic temperature.

To derive a quantitative relation, we start from the normalisation condition

£e(F-E„)/T --
J

n

We differentiate this equation, regarding the left-hand side as a function of T
and of various quantities Ai, A2 , ... which represent the external conditions

to which the body considered is subject; these quantities may, for example,

determine the shape and size of the volume occupied by the body. The energy

levels En depend on Ai, A2 , ... as parameters.

Differentiation gives

where for simplicity only one external parameter is used. Hence

di^ Wn = dA£H^ +^(F-£wni?n).
n n CA- * n

On the left-hand side £wn = 1, and on the right-hand side
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Using also the formulae F—E = —TS and*

dEJdX = dH/dl, (36.2)
we have finally

dF = -SdT+dit/dXdX.

This is the general form for the differential of the free energy.

In the same way we can derive the Gibbs distribution for a variable number
of particles. If the number of particles is regarded as a dynamical variable, it

is clear that it will be an "integral of the motion", and additive, for a closed
system. We must therefore write

log wnN = <z+pEn+yN, (36.3)

where y, like /S, must be the same for all parts of a system in equilibrium.
Putting a = Q/T, = -l/T,y = pJTt we obtain a distribution of the form
(35.2), and then by the same method as above we can deduce an expression for
the differential of the potential Q.

+ If the Hamiltonian H (and therefore its eigenvalues EH) depends on a parameter A, then

dEJdk = (dH/dX)m ;

see Quantum Mechanics, §11, Problem. On statistical averaging this gives (36.2).



CHAPTER IV

IDEAL GASES

§37. The Boltzmann distribution

One of the most important subjects of study in statistical physics is an

ideal gas. By this is meant a gas in which the interaction between the par-

ticles (molecules) is so weak as to be negligible. Physically, this approxima-

tion may be allowable either because the interaction of the particles is small

whatever the distances between them or because the gas is sufficiently rare-

fied. In the latter case, which is the more important, the rarefaction of the gas

results in its molecules' being almost always at considerable distances apart,

such that the interaction forces are quite small.

The absence of interaction between the molecules enables the quantum-

mechanics problem of determining the energy levels En of the gas as a whole

to be reduced to that of determining the energy levels of a single molecule.

These levels will be denoted by ek, the suffix k representing the set of quantum

numbers which define the state of the molecule. The energies En are then given

by the sums of the energies of the various molecules.

It must be remembered, however, that, even when there is no direct force

interaction, quantum mechanics gives a peculiar mutual effect of particles

resulting from their identity (called the exchange effect). For example, if the

particles "obey Fermi statistics", this effect has the result that no more than

one particle can be in each quantum state at one time1"; a similar effect but

in a different form occurs for particles which "obey Bose statistics".

Let nk be the number of particles in a gas which are in the kth quantum

state; the numbers nk are sometimes called the occupation numbers of the

various quantum states. Let us consider the problem of calculating the mean

values n~k of these numbers, and take in particular the extremely important

case where for all k

nk «\. (37.1)

Physically this case corresponds to a sufficiently rarefied gas. We shall later

t It should be emphasised that, when speaking of the quantum state of an individual

particle, we shall always refer to states which are fully determined by a set of values of all

the quantum numbers (including the orientation of the angular momentum of the particle,

if any). These should not be confused with the quantum energy levels; several different

quantum states correspond to a given energy level if the latter is degenerate.

106
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establish a criterion which ensures the fulfilment of this condition, but it may
be mentioned immediately that it is in practice satisfied for all ordinary molec-

ular or atomic gases. The condition would be violated only at such high

densities that the matter concerned certainly could not be regarded as an
ideal gas.

The condition nk <sc 1 for the mean occupation numbers signifies that in

fact not more than one particle is in each quantum state at any instant. Con-
sequently, we may neglect not only the direct forces of interaction of the par-

ticles but also their indirect quantum interactions mentioned above. This in

turn enables us to apply the Gibbs distribution formula to the individual

molecules. For the Gibbs distribution has been derived for bodies which are

relatively small, but at the same time macroscopic, parts of large closed sys-

tems. The macroscopic nature of these bodies made it possible to regard them
as quasi-closed, i.e. to neglect to some extent their interaction with other parts

of the system. In the case under consideration the separate molecules of the

gas are quasi-closed, although they are certainly not macroscopic bodies.

Applying the Gibbs distribution formula to the gas molecules, we can say

that the probability that a molecule is in the A:th state is proportional to e~ e* /r
,

and therefore so is the mean number nk of molecules in that state, i.e.

nk = ae-^lT
t ^^

where a is a constant given by the normalisation condition

I "ft = N (37.3)
ft

(N being the total number of particles in the gas). The distribution of mole-
cules of an ideal gas among the various states that is given by formula (37.2)
is called the Boltzmann distribution; it was discovered by Boltzmann for clas-

sical statistics in 1877.

The constant coefficient in (37.2) can be expressed in terms of the thermo-
dynamic quantities for the gas. To do this we shall give another derivation of
the formula, based on the application of the Gibbs distribution to the assembly
of all particles in the gas that are in a given quantum state. We are able to do
this (even if the numbers nk are not small) since there is no direct force of inter-

action between these particles and the remainder (or between any of the par-
ticles in an ideal gas), and the quantum exchange effects occur only for par-
ticles in the same state. Putting E = nkek , N = nh and adding the suffix k to Q
in the general formula for the Gibbs distribution for a variable number of
particles (35.2), we find the probability distribution for various values of nh as

wnt
= e^

Dk+nk^-ek)]iT
t (37.4)

In particular, w = e
n* ,T is the probability that there are no particles in

the state concerned. In the case of interest here, for which «T <= 1, the
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probability w is almost unity, and so in the expression Wi = e(Dk+ft
~ Sk),T

for

the probability of finding one particle in the kth state we can put e°klT = 1

to within terms of a higher order of smallness. Then h>i = e
(fi~ e*)/T

. The
probabilities of values nk > 1 must be taken as zero in the same approxima-

tion. Hence

"ft = E wnt«ft
= Wi-1,

n*

and we have the Boltzmann distribution in the form

Thus the coefficient in (37.2) is expressed in terms of the chemical potential

of the gas.

§38. The Boltzmann distribution in classical statistics

If the motion of gas molecules (and of the atoms in them) were subject to

classical mechanics, we could use, instead of the distribution over quantum

states, the distribution of molecules in phase space, i.e. over momenta and

co-ordinates. Let dJV be the mean number of molecules "contained" in a vol-

ume element of phase space of the molecule, dp dq = dpi. . .dpr dqi. . ,dqr

(r being the number of degrees of freedom of the molecule). We may write

this as

dN = n(p, q) dr, dx = dp dql(2jth)
r

(38.1)

and call n(p, q) the "density in phase space" (although dr differs by a factor

(2jt/i)
_r from the volume element in phase space). We then have, instead of

(37.5),

n(p, q) = e ["- £(p '
q)yT

, (38.2)

where e(p, q) is the energy of the molecule as a function of the co-ordinates

and momenta of its atoms.

Usually, however, it is not the entire motion of the molecule which is

quasi-classical, but only the motion corresponding to some of its degrees of

freedom. In particular, in a gas which is not in an external field, the transla-

tional motion of molecules is always quasi-classical. The kinetic energy of the

translational motion then appears in the energy ek of the molecule as an inde-

pendent term, while the remaining part of the energy does not involve the

co-ordinates x, y, z and momentapx , py , pz of the centre of mass of the mole-

cule. This enables us to separate from the general formula for the Boltzmann

distribution a factor which gives the distribution of the gas molecules with

respect to these variables. The distribution of the molecules in the volume

occupied by the gas is clearly just a uniform distribution, and we obtain for

the number of molecules per unit volume with momenta (of the translational
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motion) in given intervals dpx , dpy , dpz the Maxwellian distribution

:

dN
*
=

V(lZiT)*i*
exp l-(P*2+Py2+P*zy2mTl dP* dPv dP*> <38 -3 )

dNy = -y j^jfT*
exp [-m(vx*+vy*+vz*)/2T] dvx dvy dvz (38.4)

(m being the mass of a molecule), normalised to N/V particles per unit

volume.

Let us next consider a gas in an external field, in which the potential energy

of a molecule depends only on the co-ordinates of its centre of mass : u =
u(x, y, z) (for example, a gravitational field). If, as always occurs in prac-

tice, the translational motion in this field is quasi-classical, then u(x, y, z)

appears in the energy ofthe molecule as an independent term. The Maxwellian

distribution for the velocities of the molecules remains unchanged, of course,

while the distribution for the centre of mass is given by the formula

dJVr = « e-u(*' y> z)iT d V. (38.5)

This formula gives the number of molecules in an element of volume dV =
dx dy dz; the quantity

n(r) = «oe -«(*,j/,r)/r (38.6)

is the number density of the particles. The constant n is the density at points

where u = 0. Formula (38.6) is called Boltzmann'sformula.

In particular, in a uniform gravitational field along the z-axis, u = mgz,

and the gas density distribution is given by the barometricformula

n(z) = n e-m^/r (38j)

where «o is the density at the level z = 0.

At large distances from the Earth, its gravitational field must be described

by the exact Newtonian expression, the potential energy u vanishing at in-

finity. According to formula (38.6) the gas density should remain finite and
not zero at infinity, but a finite quantity of gas cannot be distributed in an

infinite volume with a density which is nowhere zero. This means that in a

gravitational field a gas (such as the atmosphere) cannot be in equilibrium

and must be continuously dissipated into space.

PROBLEMS
Problem 1. Find the density of gas in a cylinder of radius R and length / rotating about

its axis with angular velocity Q, there being a total of A^ molecules in the cylinder.

Solution. It has been mentioned in §34 that the rotation of a body as a whole is equi-
valent to the presence of an external field with potential energy —^mQ'r* (where r is the
distance from the axis of rotation). The gas density is therefore

»(r) = AemiitrViT .
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Normalisation gives

NmQ*emDir2/2T
n(r)

27iTl{e
ma *riliT -\)

'

Problem 2. Find the momentum distribution of particles for a relativistic ideal gas.

Solution. The energy of a relativistic particle is given in terms of its momentum by
£ = cV(m 2c2+p 2

), where c is the velocity of light. The normalised momentum distribution is

dN - — exp{-cV(ifi»c'+/>»)/7? dpx dpy dp,

P V 2(r/mc2
)
2X1(mc2/70+ (r/mc2)tfo(/Hc

2 /:T) 47i(mc)3
'

where K and Kx are Macdonald functions (Hankel functions of imaginary argument).
In the calculation of the normalisation integral the following formulae are used

:

f e~* cosh
' sinh2

t dt = K^/z.
o

K{{z) = -K1(z)/z-K (z).

§39. Molecular collisions

The molecules of a gas enclosed in a vessel collide with its walls as they

move. Let us calculate the mean number of impacts between the molecules

of a gas and a unit area of the wall per unit time.

We take an element of surface area of the vessel wall and define a co-

ordinate system with the z-axis perpendicular to this element, which may then

be written as dx dy. Of the molecules in the gas, those which reach the vessel

wall in unit time, i.e. collide with it, are just those whose z co-ordinate does

not exceed the component vz
of their velocity along that axis (which, of course,

must also be directed towards the wall, not away from it).

The number dvv of collisions of molecules per unit time (and per unit area

of the wall surface), in which the velocity components are in given intervals

dvx , dvy , dvz is therefore obtained by multiplying the distribution (38.4) by the

volume of a cylinder of unit base area and height vz :

N l m \
3/2

dVv =
V (

M

5

)
6XP [~ m^2

+

Vy2+ V^I2T]X v
*
dv

*
dvv dv*' (39 - !)

From this we easily find the total number v of impacts of gas molecules on

unit area of the vessel wall per unit time. To do so, we integrate (39.1) over

all velocities vz from to °° and over vx and vy from
— °° to «>; integration

over vz from — <=° to is not required, since when vz < the molecule is

travelling away from the wall, and so does not collide with it. Hence

_N I T P
V ~ V ^2^2

=
V&wT) ; (39-2)

here we have expressed the density of the gas in terms of its pressure by means
of Clapeyron's equation.
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Formula (39.1) may be written in spherical polar co-ordinates in "veloc-

ity space", using instead of vx , vy , vz
the absolute magnitude of the velocity

and the polar angles and </> which define its direction. Taking the polar axis

along the z-axis, we have v
z
= v cos 6 and

d„v = 11
|

™
|

e-mvmTvz sin e cos 6 dd d<f> dv. (39.3)

Let us now consider collisions between gas molecules. To do this, we must

first find the velocity distribution of the molecules (the term velocity every-

where referring to the velocity of the centre of mass) relative to one another.

We take any one gas molecule and consider the motion of all the other mole-

cules relative to it, i.e. consider for each molecule not its absolute velocity v

(relative to the walls of the vessel) but its velocity v' relative to some other

molecule. That is, instead of dealing with individual molecules, we always

consider the relative motion of a pair of molecules, ignoring the motion of

their common centre of mass.

We know from mechanics that the energy of the relative motion of two

particles of masses /wi and m2 is $m'v'2, where m' = /nim2/(w 1+m2) is their

"reduced mass" and v' their relative velocity. The relative-velocity distribu-

tion of the molecules of an ideal gas therefore has the same form as the

absolute-velocity distribution, except that m is replaced by the reduced mass

m'. Since all the molecules are alike, m' = \m, and the number of molecules

per unit volume with a velocity relative to the selected molecule between v'

and v'+ dv' is

^=^y (^Y'
2

e-rnv>>!*Tv'2 dl/ . (39 .4)

A collision between molecules may be accompanied by various processes

:

deflection (scattering) through a certain angle, dissociation into atoms, and

so on. The processes which occur in collisions are usually described by their

cross-sections. The cross-section for a particular process which occurs in col-

lisions between a given particle and others is the ratio of the probability of

such a collision per unit time to the particle flux density (the latter being the

number of such particles per unit volume multiplied by their velocity). The

number of collisions (per unit time) between this and other particles which

are accompanied by a certain process with cross-section a is therefore

v ' = IL 7L (aLV'
2

f e
-™'8/4lW3 dv'. (39.5)

o

The total number of such collisions per unit time throughout the volume of

the gas is obviously v'N/2.



112 Ideal Gases §40

PROBLEMS
Problem 1. Find the number of impacts of gas molecules on unit area of the wall per

unit time for which the angle between the direction of the velocity of the molecule and the

normal to the surface lies between 6 and 6+d6.
Solution.

dvB = — I } sin d cos dd.
V \ttm]

Problem 2. Find the number of impacts of gas molecules on unit area of the wall per

unit time for which the absolute magnitude of the velocity lies between v and v+dv.
Solution.

N l m \»/« _m„E/2 j- „

Problem 3. Find the total kinetic energy £lno of the gas molecules striking unit area of

the wall per unit time.

Solution.

N I2T3
.. I ITEin - y

m=P I-

\ rrm \J i

Problem 4. Find the number of collisions between one molecule and the rest per unit

time, assuming the molecules to be rigid spheres of radius r.

Solution. The cross-section for collisions between molecules is then a = 7r(2r)2 =
4nr* (since a collision occurs whenever two molecules pass at a distance less than 2r).

Substitution in (39.5) gives

. , . \tcT N a , „ / 71 _

§40. Ideal gases not in equilibrium

The Boltzmann distribution can also be derived, in a quite different man-

ner, directly from the condition of maximum entropy of the gas as a whole,

regarded as a closed system. This derivation is of considerable interest in

itself, since it is based on a method whereby the entropy of gas in any non-

equilibrium macroscopic state may be calculated.

Any macroscopic state of an ideal gas may be described as follows. Let us

distribute all the quantum states of an individual particle of the gas among

groups each containing neighbouring states (which, in particular, have neigh-

bouring energy values), both the number of states in each group and the num-

ber of particles in these states being still very large. Let the groups of states be

numbered j = 1, 2, . . ., and let Gj be the number of states in group j, and

Nj the number of particles in these states. Then the set of numbers Nj will

completely describe the macroscopic state of the gas.

The problem of calculating the entropy of the gas reduces to that of deter-

mining the statistical weight AT of a given macroscopic state, i.e. the number

of microscopic ways in which this state can be realised. Regarding each group

of Nj particles as an independent system and denoting its statistical weight
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byArit we can write
5

Ar = IlAr
j

. (40.1)

i

Thus the problem reduces to that of calculating the AF^

In Boltzmann statistics the mean occupation numbers of all quantum states

are small in comparison with unity. This means that the numbers of particles

N- must be small compared with the numbers of states G
i
(Nj <z Gj), but of

course themselves still large. As has been explained in §37, the smallness of

the mean occupation numbers enables us to suppose that all the particles are

entirely independently distributed among the various states. Placing each of

the Nj particles in one of the G, states, we obtain altogether Gfi possible

distributions, but among these the distributions which differ only by a per-

mutation ofparticles are identical, since the particles themselves are identical.

The number of permutations of Nj particles is JV,-!, and so the statistical

weight of the distribution of Nj particles among Gj states is

ATj = GjNi/Nj\. (40.2)

The entropy of the gas is calculated as the logarithm of the statistical

weight:

S = logAr = ^logArj.

Substitution of (40.2) gives

5 = K^logG,-log^!).
j

Since the numbers Nj are large, we can use the approximate formula
1 log Nj !

=

Nj log (Nj/e), obtaining

S = ^NjlogieGj/Nj). (40.3)
;'

This formula gives the solution of the problem, determining the entropy of

an ideal gas in any macroscopic state defined by the set of numbers Nj. It may

be rewritten by using the mean numbers ~h~j of particles in each of the quantum

states in group j:

~n~j = NjIGj. (40.4)

Then _ _
S = £ GjHj log (e/rij). (40.5)

i

If the motion of the particles is quasi-classical, then in this formula we can

change to the particle distribution in phase space. Let the phase space of

a particle be divided into regions Ap (j)Aq(j)
, each of which is small but

t When N is large, the sum log N\ = log 1 + log 2+ . . . +log N may be approximately

replaced by the integral

N
flogx-dx = N\og(N/e).
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nevertheless contains a large number of particles. The numbers of quantum
states "belonging" to these regions are

Gj = ApW AqU)/(2jvhy = AxW, (40.6)

where r is the number of degrees of freedom of the particle; the numbers of

particles in these states may be written as Nj = n(p, q)Ax {})
, where n(p, q) is

the particle density distribution in phase space. We substitute these express-

ions in (40.5), and use the fact that the regions zlr(j) are small in size and
large in number to replace the summation over j by integration over the whole
phase space of the particle:

S = n log (e/n) dr. (40.7)

In a state of equilibrium, the entropy must be a maximum (as applied to

the ideal gas, this statement is sometimes called Boltzmanris H theorem). We
shall show how this condition may be used to find the distribution function

for the gas particles in a state of statistical equilibrium. The problem is to

find n
j
such that the sum (40.5) has the maximum value possible under the

subsidiary conditions

j i

Z s
i
N

i
= Z e

i
G

i
n

i
= E

>

3 j

which express the constancy of the total number of particles N and of the

total energy E of the gas. Following the usual method of Lagrange's undeter-

mined multipliers, we have to equate to zero the derivatives

diS+xN+Pfy/dnj = 0, (40.8)

where a and
f} are constants. Effecting the differentiation, we find

Gj(— log #i,- + a+ j8e,•) = 0,

whence log «T = a+^e^-, or

rtj = e*+Pei.

This is just the Boltzmann distribution, the constants a and /? being given in

terms ofT and p by a = p/T, = -l/7
,

.

t

§41. The free energy of an ideal Boltzmann gas

We may use the general formula (31.3)

F= -T log ^e-EJT (4L1)
n

to calculate the free energy of an ideal gas which obeys Boltzmann statistics.

t These values of a and fi could have been foreseen : equations (40.8) can be written as a
relation between differentials, dS+xdN+fidE = 0, which must be the same as the differen-
tial of the internal energy at constant volume, dE = TdS+fidN.
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Writing the energy En as a sum of energies ek , we can reduce the summation

over all states of a gas to summation over all states of an individual molecule.

Each state of the gas is defined by a set ofN values of sk (where N is the num-

ber of molecules in the gas), which in the Boltzmann case may be regarded

as all different (there being not more than one molecule in each molecular

state). Writing e~EnlT as a product of factors e~ SlclT for each molecule and

summing independently over all states of each molecule, we should obtain

(£ e-'kiT)N m (41.2)

ft

The set of possible values of sk is the same for each molecule of the gas, and

so the sums £ e~CklT are also the same.

The following point must be borne in mind, however. Each set of AT differ-

ent values sk which differs only in the distribution of the identical gas mole-

cules over the levels eh corresponds to the same quantum state of the gas.

But in the statistical sum in formula (41.1) each state must be included only

once.f We must therefore again divide the expression (41.2) by the number of

possible permutations ofN molecules, i.e. by N\$. Thus

E e~E-' T = 4r (I «-*"y- <4I -3>

Substitution of this expression in (41.1) gives

f = - rAMogJ>- e*/T+riogAn.

SinceN is very large, we can use the formula

log AH s JVlog(JV»;

see the first footnote to §40. This gives the formula

F = -NTlog [(e/N) £ e~^T
], (41.4)

ft

which enables us to calculate the free energy of any gas consisting of identical

particles obeying Boltzmann statistics.

In classical statistics, formula (41.4) must be written in the form

F = -NTlog [(e/N) [e~^^T dr]; (41.5)

J
the integration is taken over the phase space of the molecule, and dr is defined

by (38.1).

t See the second footnote to §31.

X Here it is important that in Boltzmann statistics the terms containing the same eh in

(41.2) are of negligible significance.
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§42. The equation of state of an ideal gas

§42

It has already been mentioned in §38 that the translational motion of the
molecules in a gas is always quasi-classical; the energy of a molecule may be
written in the form

en(Px,Py,Pz) = (Px
2
+Py2+P2

2)/2m+ E'k , (42.1)

where the first term is the kinetic energy of the translational motion, and e'k
denotes the energy levels corresponding to the rotation and internal state of
the molecule; s\ is independent of the velocities and co-ordinates of the centre
of mass of the molecule (assuming that there is no external field).

The partition function in the logarithm in formula (41.4) must now be
replaced by the expression

oo oo oo

?(2^*~
e'* /T

{ | |
j™P[-(px

2+Py2+Pz
2)/2mT]dpx dpy dpz dV

V — oo — oo — oo

= V{mTI2nWfi*Y
J
e~*'klT \ (42.2)

ft

the integration over V(dV= dx dy dz) is over the whole volume of the gas.

For the free energy we obtain

~eV l mT \ 3/2

(42.3)

The sum in (42.3) cannot, of course, be calculated in a general form without
any assumptions as to the properties of the molecules, but an important fact

is that it depends only on the temperature. The dependence of the free energy
on the volume is therefore entirely determined by formula (42.3), and so we
can derive from it various important general results concerning the properties
of an ideal gas (which is not in an external field).

Separating in (42.3) the term containing the volume, we may write this for-

mula as

F = -NTlog (eV/N)+Nf(T), (42.4)

where /(J) is some function of the temperature. Hence the pressure of the gas
is P = -dFJdV = NT/V, or

PV = NT. (42.5)

Thus we have the familiar equation of state of an ideal gas. If the tempera-
ture is measured in degrees, then

1-

PV = NkT. (42.5a)

t For a gram-molecule of gas (N = 6.023 XlO23 = Avogadro's number), the product
R = Nk is called the gas constant: R = 8.3 14XlO7 erg/deg.
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7

Knowing F, we can find the other thermodynamic quantities also. For

example, the thermodynamic potential is

= -NT log (eV/N)+Nf(T)+PV.

Substituting V = NT/P according to (42.5) (since & must be expressed as a

function of P and T) and using a new function of temperature %{T) = f(T)

— T log T, we obtain

= NT log P+N%{T). (42.6)

The entropy is defined as

S = -dF/dT = N log (eV/N)-Nf'(T), (42.7)

or, as a function ofP and T,

S = -d&JdT = -JV log P-N%'(T). (42.8)

Finally, the energy is

E = F+TS = Nf(T)-NTf'(T). (42.9)

We see that the energy is a function only of the temperature of the gas (and

the same is true of the heat function W = E+PV = E+NT). This is evident

a priori: since the molecules of an ideal gas are assumed not to interact, the

change in their mean distance apart when the total volume of the gas varies

cannot affect its energy.

As well as E and W, the specific heats C
v
= (dEfdT)v and C

p
= (3 W/dT)p

are functions only of the temperature. In what follows it will be convenient to

use the specific heats per molecule, denoted by lower-case letter c:

Cv = Ncv , Cp
= Ncp . (42.10)

Since for an ideal gas W—E = NT, the difference c
p
— cv has a fixed value:

cp-cv =l (42.11)

(in ordinary units, cp—cv
= k).f

PROBLEMS
Problem 1 . Find the work done on an ideal gas in an isothermal change of volume from

Vt to V2 (or of pressure from Pt to P2).

Solution. The required work R is equal to the change in the free energy of the gas, and
from (42.4) we have

R - F2-F1 = NT log (VJVJ = NT log (P 2/P1).

The quantity of heat absorbed in this process is

Q = T{SZ-SJ = NT log (VM).
The latter result also follows directly from the fact that R+Q is the change of energy and
is equal to zero for an isothermal process in an ideal gas.

tSince the specific heat is the derivative of the energy (quantity of heat) with respect
to temperature, C must be replaced by C/k in the formulae when ordinary units (degrees)
are used.
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Problem 2. Two vessels contain two identical ideal gases at the same temperature T
and with equal numbers of particles N but at different pressures Px and P2 . The vessels are
then connected. Find the change in entropy.

Solution. Before the vessels are connected, the entropy of the two gases is equal to the
sum of their entropies, S = -JVlog (P1P2)-2^'(r). After the connection, the tempera-
ture of the gases remains the same (as follows from the conservation of energy for the two
gases). The pressure is given by the relation

P 2NT ^\PiP2
)'

The entropy is now

S = 2N\og^^-2Nx'(T).

The change in entropy is therefore

Problem 3. Find the energy of an ideal gas in a cylindrical vessel of radius R and
height h rotating about its axis with angular velocity Q.

Solution. According to §34, the rotation is equivalent to the presence of an external
"centrifugal" field with potential energy u = -% mQ2r 2

(r being the distance of a particle
from the axis of rotation).

When an external field is present, the integrand in (42.2) contains an extra factor e
- U ' T

,

and so in the argument of the logarithm in (42.3) the volume V is replaced by the integral

f e-"" dV. Thus

F = P -JVTlog y f e-»'T dV,

where F is the free energy of the gas in the absence of the external field.

In the present case this formula for the free energy becomes (in a rotating co-ordinate
system)

F' = F -NTlog^— j f en&'Wlnr drdz

IT= F -NTlog [-gj^fc-ww-i)] .

The angular momentum of the gas is

M= -dF'/dQ

2NT NmR2Q
Q l— e-mQ*R*l2T

*

The energy in a system rotating with the body is

and in a fixed system of co-ordinates (see (26.5))

E - E'+MQ - E i

NmQ2Ri
NT

where E is the energy of the gas at rest.
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§43. Ideal gases with constant specific heat

We shall see later that in many important cases the specific heat of a gas

is constant, independent of temperature, over a greater or smaller tempera-

ture interval. For this reason we shall now calculate in a general form the

thermodynamic quantities for such a gas.

On differentiating the expression (42.9) for the energy, we find that the

function f(T) is related to the specific heat cv by - Tf"(T) = cv . Integration of

this relation gives

f(T)= -cvT\ogT-CT+e ,

where £ and e are constants. Substitution in (42.4) gives for the free energy

the final expression

F = Neo-NTlog (eV/N)-NcvT log T-N£T. (43.1)

The constant £ is called the chemical constant of the gas. For the energy we

have
E = Ne +NcvT, (43.2)

a linear function of the temperature.

The thermodynamic potential of the gas is obtained by adding to (43.2)

the quantity PV = NT, the volume of the gas being expressed in terms of the

pressure and the temperature. The result is

= Neo+NT\og P-NcpTlog T-N£T. (43.3)

The heat function W = E+PV is

W = Ne +NcpT (43.4)

Finally, differentiating (43.1) and (43.3) with respect to temperature, we ob-

tain the entropy in terms of T and V and of T and P respectively:

S = N log (eV/N)+Ncv log T+(£+ cv)N, (43.5)

S= -N log P+Ncp log T+(C+ cp)N. (43.6)

From these expressions for the entropy we can, in particular, derive im-

mediately a relation (called the Poisson adiabatic) between the volume, tem-

perature and pressure of an ideal gas (of constant specific heat) undergoing

adiabatic expansion or compression. Since the entropy remains constant in an

adiabatic process, we have from (43.6) —N log P+Nc
p
log T = constant,

whence Tcp/P = constant or, using (42.11),

jvpi-y = constant, (43.7)

where y denotes the constant ratio

y = cp/cv . (43.8)

Using also the equation of state PV — NT, we obtain relations between Tand

V, and P and V:

TV7- 1 = constant, PV? = constant. (43.9)
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PROBLEMS
Problem 1. Two identical ideal gases at the same pressure P and containing the samenumber of particles N but at different temperatures Tx and T2 are in vessels with volumesvx and V2 . The vessels are then connected. Find the change in entropy.

Solution. Before the vessels are connected, the entropy of the two gases, equal to thesum of their entropies is by (43.6) S = -2NlogP+Ncp log (T^.t After the connec-
tion, the temperatures of the gases become equal. The sum of the energies of the two gasesremains constant. Using the expression (43.2) for the energy, we find T = HT + T ^
where T is the final temperature.

2 1 *'*

After the connection, the gas contains 2N particles and occupies a volume Vr+ V* =N(T1 + T2)/P. Its pressure is then 2NT/(V1+ V2) = P, i.e. the same as before. The
entropy is

S = - 2N log P+ 2Ncp log (frx+±T2),

and the change in entropy is

AS = S-S

= NcP log ^+™
4TXT2

•

Problem 2. Find the work done on an ideal gas in adiabatic compression.

Solution. In an adiabatic process the quantity of heat Q = 0, and so R = E -Ewhere E2 -Ex is the change in energy during the process. According to (43 2) R = Nc(T -Tt), where Tt and T2 are the gas temperatures before and after the process R can'beexpressed in terms of the initial and final volumes Vx and V2 by means of the relation

R=Nc,T1[(V1/V2)y-^-l]

= NcvT2[\-(V2IV1
)v-il

Problem 3. Find the quantity of heat gained by a gas in an isochoric process, i.e one
which occurs at constant volume.

'

Solution. Since in this case the work R = 0, we have

Q = E2-El = Ncv(T2~Tl).

Problem 4. Find the work done and quantity of heat gained in an isobaric process i eone which occurs at constant pressure.
'

Solution. At constant pressure

R= -P(V2-VX), Q=W2-WX ,whence

R = N(TX - T2\ Q = Ncp(T2- Tx).

Problem 5. Find the work done on a gas and the quantity of heat which it gains in
compression from volume Vx to V2 in accordance with the equation PV« = a (a pohtrooic
process). v y vn V1,n.

Solution. The work is

R= -jpdV=-^ (Fy-- V^-%
Pi

Since the sum of the quantity of heat gained and the work done is equal to the total change
in energy, we have Q = Ncv(T2-Tx)-R, and since T = PV/N = (a/AOF1 "",

Q = a
{
c
^jht){ Vil

~n- Fil~") •

t We everywhere omit the constant terms in the entropy and energy which are unimpor-
tant in the solution of problems.
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Problem 6. Find the work done on an ideal gas and the quantity of heat which it gains
on going through a cyclic process (i.e. one in which it returns to its initial state at the end
of the process), consisting of two isochoric and two isobaric processes: the gas goes from
a state with pressure and volume Px , Vx to states Px , V2 ; P2 , V2 ; P2 , Vx ; Px , Vx again.

Solution. The change in energy in a cyclic process is zero, since the initial and final
states are the same. The work done and the quantity of heat gained in such a process are
therefore the same with opposite signs (R = -Q). In order to find R in the present case,
we note that in isochoric processes the work done is zero, and for the two isobaric processes
it is respectively -PX(V2

- Vx ) and -P2(VX
- V2). Thus R = (V2

- VX)(P2 ~PX).

Problem 7. The same as Problem 6, but for a cyclic process consisting of two isochoric
and two isothermal processes, the successive volumes and temperatures of the gas being
Vi, Tx ; Vx , T2 ; V2 , T2 ; V2 , Tx ; Vx , Tx .

Solution.
R = (T2-TX)N log (VJV2).

Problem 8. The same as Problem 6, but for a cyclic process consisting of two isothermal
and two adiabatic processes, the successive entropies, temperatures and pressures being
Sx , Tx , P x ; Sx , T2 ; 52 , T2 , P2 ; S2 , Tx ; Sx , Tx , Px .

Solution.

Q = {T2-TX){S2-SX)

= (rs- TX)[N log (P1/P2)+Ncp log (T2/Tx)].

Problem 9. The same as Problem 6, but for a cyclic process consisting of two isobaric
and two isothermal processes, the successive states being Px , Tx ; Px , T2 ; P2 , T2 ; P2 , Tx ;

-Pi> Tx .

Solution. The work done on the gas in the isobaric processes is (see Problem 4)
N(TX - T2) and N(T2 - Tx), and that in the isothermal processes is NT2 log (P2/Px) and
NTX log (PJP2). The sum of these is R = N(T2

- Tx) log (P2/Px).

Problem 10. The same as Problem 6, but for a cyclic process consisting of two isobaric
and two adiabatic processes, the successive states being Px , £",, T,; P,, S,: P, S* 7V
P2 , SX ;PX , Sx , Tx .

2 '

Solution. The temperature in the second state is T^PJP^-v^, and in the fourth
state Tx(Px/P2)

(1-y»V; these are obtained from Tx and T2 by means of (43.7). The quantity
of heat gained by the gas in adiabatic processes is zero, and in the isobaric processes it is
(see Problem 4)

Ncp[T2(P2/Px)« -vyiy- tx ] and

Ncp[T,(PxIP2
)«-WY- T2 ].

Hence

Q = NcpTx[(PxIP2yi-vyy-i]+NcpT2 [(P2/Px)^-n'y-ii

Problem 11. The same as Problem 6, but for a cyclic process consisting of two isochoric
and two adiabatic processes, the successive states being K,, 5",, 7V V, 5,- V„ 5, 7V
V2,SX ; VX,SX,TX .

2
'

2
'

2
' "'

Solution. Using the result of Problem 2, we find

R = NcvT2[\-{V2IVx
)y-i]+Nc

vTx[\-(VxIV2
)y-i].

Problem 12. Determine the maximum work that can be obtained by connecting vessels
containing two identical ideal gases at the same temperature T and with equal numbers
of particles N but having different volumes Vx and V2 .

Solution. The maximum work is done if the process occurs reversibly (i.e. if the
entropy remains constant), and is equal to the difference between the energies before and
after the process (§19). Before the connection of the vessels, the entropy of the two gases
is equal to the sum of their entropies, i.e. by (43.5),

S = AT log (eZV
x V2/N*)+ 2Ncv log T .
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After the connection we have a gas consisting of IN particles occupying a volume Vt+ V2

at some temperature T. Its entropy is

S = 2AHog [eiV^ V2)/2N]+ 2Ncv log T.

Equating SQ and S gives the temperature T:

\_4V
1
V1_Y

The energy of the two gases before and after the connection is E = 2NcvT and E =
2NcvT respectively. The maximum work is therefore

[/ 4.V V~ \(y— i)/2i

1 ~( (k1+k1)0 J-

Problem 13. The same as Problem 12, but for gases with the same pressure P and
different temperatures Tx and T2 before the connection of the vessels.

Solution. We have similarly

Problem 14. Find the minimum work that must be done on an ideal gas in order to

compress it from pressure Pt to P2 at a constant temperature equal to that of the surround-
ing medium (T = T ).

Solution. According to (20.2) the minimum work is R^n = (E2 -Et) -T (S2 ~S})+
-PoC^ - ^i). where the suffixes 1 and 2 refer to the gas before and after compression.
In the present case the energy E is unchanged (since the temperature is constant), i.e.

E2 —Ex = 0. Using (43.6), we find the change of entropy corresponding to the change of
pressure from P x to P 2 : S2 -S1 = AT log (PJP2), and the change of volume is V2

- Vx
=

iVr (l/P2 -l/JP1)- Hence

*--«.['»•?;+'.(?--£)]

Problem 15. Determine the maximum work which can be obtained from an ideal gas

cooled from temperature T to the temperature of the medium T at constant volume.

Solution. From the general formula (20.3),

tfmax = Ncv(T- T )+NcvT log {TJT).

Problem 16. The same as Problem 15, but for a gas cooled from temperature T to the

temperature of the medium T and at the same time expanding from pressure P to the

pressure of the medium P .

Solution.

R™ = Ncv(T-T )+NT log (P/P )+NcpT log (T /T)+N(TP /P-T ).

Problem 17. Gas at temperature T flows from a large thermally insulated reservoir into

an empty thermally insulated vessel, the gas pressure in the reservoir remaining constant.

Find the change in the gas temperature.

Solution. The energy E of the gas in the vessel consists of the energy E which it had
in the reservoir and the work done on it to "expel" it from the reservoir. Since the state of
the gas in the reservoir may be regarded as steady, we have the condition W = E (cf. §18).

The gas temperature in the vessel is therefore T = yT .

§44. The law of equipartition

Before going on to calculate in detail the thermodynamic quantities for

gases, making allowance for the various quantum effects, it is useful to con-

sider the same problem from the point of view of purely classical statistics.
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We shall see later when and to what extent the results obtained are applicable

to actual gases.

A molecule is a configuration of atoms executing small oscillations about

certain equilibrium positions which correspond to minimum potential energy

of their interaction. The potential energy is then of the form

'Vib

u = e + £ atk9iak,
i,fe= l

where £o is the potential energy of interaction of the atoms when they are

all in their equilibrium positions; the second term is a quadratic function of

the co-ordinates which give the deviations of the atoms from their equilibrium

positions. The number rvib of co-ordinates in this function is the number of

vibrational degrees of freedom of the molecule.

This number can be determined from the number n of atoms in the mole-

cule. A molecule containing n atoms has a total of 3k degrees of freedom.

Three of these correspond to the translational motion of the molecule as a

whole, and three to its rotation as a whole. If all the atoms are collinear (and

in particular for a diatomic molecule) there are only two rotational degrees

of freedom. Thus a non-linear molecule of n atoms has 3n — 6 vibrational

degrees of freedom, and a linear one has 3« — 5. For n = 1 there are, of course,

no vibrational degrees of freedom, since all three degrees of freedom of an

atom correspond to translational motion.

The total energy e of the molecule is the sum of the potential and kinetic

energies. The latter is a quadratic function of all the momenta, and these are

equal in number to the full 3« degrees of freedom of the molecule. The energy

e is therefore of the form e = s +fu(p, q), where fn(p, q) is a quadratic

function of the momenta and co-ordinates ; the total number of variables in

this function is / = 6» — 6 (for a non-linear molecule) or 6w — 5 (for a linear

molecule); in a monatomic gas, / = 3, since the co-ordinates do not appear

at all in the expression for the energy.

Substituting this expression for the energy in (41.5) we have

F = -NT log
€ ' e °

e-fn(p.fl)/r dr

In order to find the dependence on temperature of the integral in this formula,

we substitute p = p'\/T, q = q'^/T for all the / variables on which the func-

tion fn(p, q) depends. Since this function is quadratic,fu(p, q) = Tfu(p', q'),

and T cancels in the exponent of the integrand. The transformation of the

differentials of these variables in dr gives a factor Tl/2
, which can be taken

outside the integral. The integration over the vibrational co-ordinates q is

taken over the range of values corresponding to vibrations in which the

atoms remain within the molecule. However, since the integrand diminishes
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rapidly with increasing q, the integration may be extended to the whole range
from - oo to oo, as well as over all the momenta. The above-mentioned
change of variables then leaves the limits of integration unaltered, and the
whole integral is a constant independent of temperature. Using also the fact
that the integration with respect to the co-ordinates of the centre of mass of
the molecule gives the volume V occupied by the gas, we obtain for the free
energy an expression of the form

F = -NT log (AVe- Eo/TTi/2JN),

where A is a constant. Expanding the logarithm, we have an expression of
exactly the type (43.1) with a constant specific heat equal to

** = £/• (44.1)

The specific heat cp
= c

v+l is accordingly

cp = i(l+2). (44.2)

Thus we see that a purely classical ideal gas must have a constant specific

heat. Formula (44.1) enables us to state the following rule. Each variable in

the energy e{p, q) of the molecule gives an equal contribution of §- to the
specific heat c

p of the gas Qk in ordinary units) or, what is the same thing,

an equal contribution of \T to its energy. This is called the law of equiparti-

tion.

Since for the translational and rotational degrees of freedom the energy
e(p, q) contains only the corresponding momenta, we can say that each of
these degrees of freedom gives a contribution of \ to the specific heat. Each
vibrational degree of freedom corresponds to two variables (co-ordinate and
momentum) in the energy e(p, q), and its contribution to the specific heat
is 1.

For the model considered here it is easy to find a general formula for the

energy distribution of the gas molecules. For convenience we shall measure
the energy of a molecule from the value e , i.e. omit this constant from the

expression for e(p, q). Let us consider the volume in the phase space of the

molecule whose points correspond to values of e(p, q) not exceeding a given

value e, i.e. determine the integral r(e) = fdt taken over the region e(p, q)
*s e. According to the foregoing discussion, e(p, q) is a quadratic function of

/ variables. We replace those / quantities p, q on which the energy e(p, q)
depends by new variables p' = p/Ve, q' = qjVe. Then the condition e(p, q)

«s e becomes e'(p', q') ^ 1, and fdt becomes emf dt' . The integral /dr' is

clearly independent of s, and sot = constant Xe'/2
, whence dr(e) = con-

stantX£ i?-1 d£ and the energy probability distribution is

dw
e
= Ae- e / Tet l -i ds.
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Determining A from the normalisation condition, we find

dWe = fw\p) e
~ s/Teil~ 1 d£ - <44 - 3>

PROBLEM
Find the specific heat of an ideal gas in the extreme relativistic case, where the energy

of a particle is related to its momentum by e = cp, c being the velocity of light.

Solution. According to (41.5) we have

eVF =- NTl0&NkwJe-°plT'W«P
o

or, after carrying out the integration,

F= -NTlog(AVT3/N),

where A is a constant. The specific heat is therefore c„ = 3, which is twice the value for a
non-relativistic monatomic gas.

§45. Monatomic ideal gases

The complete calculation of the free energy (and therefore of the other
thermodynamic quantities) for an ideal gas requires a calculation of the
specific form of the partition function in the logarithm in (42.3),

k

Here e'k are the energy levels of the atom or molecule (the kinetic energy of
the translational motion of the particle being excluded). If the summation is

taken only over all the different energy levels, it must be remembered that a
level may be degenerate, and in this case the corresponding term must appear
in the sum over all states as many times as the degree of degeneracy. Let this

be gk . The degree of degeneracy of the level is often called in this connection
its statistical weight. Omitting for brevity the prime in e\, we can write the
partition function concerned in the form

z = 2>^- £*/T
. (45.1)

ft

The free energy of the gas is

F=-NTXog _ Z (45.2)

Turning now to the consideration of monatomic gases, we must first of all

make the following important comment. As the gas temperature increases, so
does the number of atoms in excited states, including the states of the
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continuous spectrum, which correspond to ionisation of the atom. When the

temperature is not too high, the relative number of ionised atoms in the gas

is negligible, but the gas is almost completely ionised at temperatures T of

the order of the ionisation energy 7ion , and not only for r» 7ion (see §106).

Thus a non-ionised gas can reasonably be considered only at temperatures

such that r<s; IionJ

The atomic terms (neglecting their fine structure) are so situated that the

separation between the ground state and the first excited level is comparable

with the ionisation energy. At temperatures T<sc 7ion , the gas will therefore

be practically free not only of ionised atoms but also of excited atoms, and so

all the atoms may be regarded as being in the ground state.

Let us first consider the simplest case, that of atoms which in their ground

state have neither orbital angular momentum nor spin (L = S = 0), such as

the atoms of the inert gases. The ground state is not degenerate, and the

partition function reduces to a single term, Z = e~ e° IT
. For monatomic

gases it is customary to put e = 0, i.e. to measure the energy from the ground

state of the atom, so that Z = 1. Expanding the logarithm in (45.2) as a sum

of logarithms, we obtain for the free energy an expression of the type (43.1),

with constant specific heat

cv = 3/2 (45.3)

and chemical constant

C=|log£. («.4)

This value of the specific heat is due entirely to the translational degrees of

freedom of the atom (y for each degree of freedom); it will be remembered

that the translational motion of the gas particles is always quasi-classical.

The "electronic degrees of freedom" under these conditions (no excited atoms

in the gas) have, of course, no effect on the thermodynamic quantities. t

These expressions enable us to deduce a criterion for the validity of Boltz-

mann statistics. In this statistics it is assumed that

n£ = gC—*)/t « 1

t For different atoms the temperature Ii6D/k lies between 5 X 104 degrees (alkali metal

atoms) and 28x10* degrees (helium).

J The "electronic part" of the thermodynamic quantities, naturally, can never be treated

classically. In this connection we may note the fact (which in essence has been tacitly

assumed already) that in classical statistics the atoms must be regarded as particles without

internal structure. The impossibility of applying to effects within the atom a statistics based

on classical mechanics is further shown by the absurd result obtained on substituting the

interaction energy between the electrons and the atomic nucleus in the classical distribution

formulae. This energy is of the form — a/r, where r is the distance of the electron from the

nucleus and a is a constant. The substitution would give a factor e"lrT in the distribution,

which becomes infinite for r = 0. This would mean that all the electrons would have to

"fall" into the nucleus in thermal equilibrium.
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(see (37.1)). It is clearly sufficient to require the fulfilment of the condition

e"'T «l.

For the chemical potential fi = 0/N we have from (43.3), with cv and £

given by (45.3) and (45.4),

P /27tft2\ 3/2
~

T5* \ m )

N /27T^2\3/2-

V

ii = riog

(45.5)= 7- log

Thus we obtain the condition

(N/V)(h2/mT)3/2 «l. (45.6)

For a given temperature, this condition requires that the gas should be

sufficiently rarefied. Substitution of numerical values shows that in practice,

for any atomic (or molecular) gas, this condition can be violated only at

densities where the interaction of the particles becomes important and the

gas can in any case no longer be regarded as ideal.

It is useful to note the following intuitive interpretation of the above con-

dition. Since the majority of atoms have energies of the order of T, and

therefore momenta ofthe order of V(mT) t we can say that all the atoms occ-

upy in phase space a volume of the order of V(mT)3'2
, corresponding to

~ V(mT)3l2/1P quantum states. In the Boltzmann case this number must be

large compared with the number 7Y of particles, and hence we have (45.6).

Finally, we may make the following comment. The formulae derived in

this section appear at first sight to contradict Nernst's theorem, since neither

the entropy nor the specific heat is zero at T = 0. However, it must be

remembered that, under the conditions for which Nernst's theorem is stated,

all actual gases condense at sufficiently low temperatures. For Nernst's

theorem requires that the entropy of a body should tend to zero at T = for a

fixed value of its volume. But as T -* the saturated vapour pressure of all

substances becomes arbitrarily small, so that a fixed finite quantity of matter

in a fixed finite volume cannot remain gaseous as T -* 0.

If we consider a model of a gas, possible in principle, which consists of

mutually repulsive particles, then, although such a gas will never condense, at

sufficiently low temperatures Boltzmann statistics ceases to be valid, and the

application of Fermi or Bose statistics leads, as we shall see later, to express-

ions which are in agreement with Nernst's theorem.

§46. Monatomic gases. The effect of the electronic angular momentum

If only one of the angular momenta L and S is non-zero in the ground
state of the atom, then this state again has no fine structure. In practice the

absence of fine structure of the ground state is always due to a zero orbital
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angular momentum; the spin S is sometimes not zero (for example, atoms in
the vapour of alkali metals).

A level with spin S is (2S+ l)-fold degenerate. The only difference as com-
pared with the case discussed in §45 is that the partition function Z is now
2S+1 instead of 1, and so the chemical constant (45.4) is increased by the
quantity 1

"

Cs = log (25+1). (46> !)

If the ground state of an atom has a fine structure, it must be remembered
that the intervals in this structure may generally be comparable with T, and
so all the components of the fine structure of the ground state must be taken
into account in the partition function.

The fine-structure components differ in the value of the total angular
momentum of the atom (with given orbital angular momentum L and spin S).
Let these levels, measured from the lowest of them, be denoted by ej. Each
level with a given J is (2/+l)-fold degenerate with respect to orientations of
the total angular momentum.* The partition function therefore becomes

Z = Z(2J+l)e-°j/T. (462)
j

the summation is taken over all possible values of / for the given L and S.
We obtain for the free energy

F = "eV / mTA 3/2

(46.3)

This expression becomes considerably simpler in two limiting cases. Let
us assume that the temperature is so high that Tis large in comparison with
with all the fine-structure intervals: J» ej. Then we can put e~ejlT

s= 1>

and Z becomes simply the total number of fine-structure components.
(2S+1)(2L+1). The expression for the free energy involves the constant
specific heat cv = 3/2 as before, and the quantity

Csl = log [(2S+ 1)(2L+ 1)] (46.4)

is added to the chemical constant (45.4).

Similar expressions for the thermodynamic quantities (with a different £)
are obtained in the opposite limiting case where J is small compared with the

t We may write out for reference the formula for the chemical potential of a monatomic
ideal gas with statistical weight (degree of degeneracy) of the ground state g:

^
= riog li7^br) \

= Tlonjvhr) ]• (46 - la>

This applies also to a Boltzmann gas of elementary particles; for instance, in an electron
gas g = 2.

X We assume that Russell-Saunders coupling is valid in the atom; see Quantum Mechanics

\

§72.
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fine-structure intervals.
1-

In this case all terms may be neglected in the sum

(46.2) except the one with Sj = (the lowest component of the fine structure,

i.e. the ground state of the atom). In consequence the quantity added to the

chemical constant (45.4) is

fj = log(2/+l), (46.5)

where J is the total angular momentum of the atom in the ground state.

Thus, when the ground state of the atom has fine structure, the specific

heat of the gas at sufficiently low and sufficiently high temperatures has the

same constant value, but in the intermediate range it depends on the tem-

perature and passes through a maximum. It must be borne in mind, however,

that for gases concerned in practice (heavy-metal vapours, atomic oxygen, etc.)

only the range of high temperatures, where the specific heat becomes con-

stant, is of importance.

So far we have ignored the possibility that the atom has a non-zero nuclear

spin i. The existence of such a spin causes the hyperfine splitting of atomic

levels. The intervals in this structure are, however, so small that they may be

neglected in comparison with T at all temperatures where the gas remains a

gas.* In calculating the partition function, the energy differences between the

hyperfine multiplet components may be entirely neglected, and the splitting

need be taken into account only as increasing the degree of degeneracy of

each level (and therefore the sum Z) by a factor 2i+ 1. Accordingly, the free

energy contains an additional "nuclear" term

Fnuc = -NT log (2i+ 1). (46.6)

This term does not affect the specific heat of the gas (the corresponding

energy Enuc = 0) and simply changes the entropy by Snuc = Nlog (2/+1),

and the chemical constant by Cnuc = log (2/+ 1).

Because the interaction between the nuclear spin and the electron shells is

extremely weak, the "nuclear" part of the thermodynamic quantities usually

plays no part in the various thermal processes and does not appear in the

equations. We shall therefore omit these terms, as is usually done; in other

words, we shall measure the entropy not from zero but from the value Snuc
•due to the nuclear spins.

§47. Diatomic gases with molecules of unlike atoms. Rotation of molecules

Turning now to the calculation of the thermodynamic quantities for a

diatomic gas, we may point out first of all that, just as monatomic gases can

t As examples, the quantities ej/k for the components of the triplet ground state of the

oxygen atom are 230° and 320°; for those of the quintet ground state of the iron atom they

are between 600° and 1400°, and for the doublet ground state of the chlorine atom 1300°.

X The temperatures corresponding to the hyperfine structure intervals of various atoms

range from 0.1° to 1.5°.
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reasonably be considered only for temperatures T which are small compared

with the ionisation energy, a diatomic gas can be regarded as such only if T
is small compared with the dissociation energy of the molecule.* This in turn

means that only the lowest electronic state of the molecule need be retained

in the partition function.

Let us begin with the most important case, where the gas molecule in the

lowest electronic state has neither spin nor orbital angular momentum about

the axis (S = 0, A = 0); such an electronic state has, of course, no fine struct-

ure. We must also distinguish molecules composed of unlike atoms (includ-

ing different isotopes of the same element) from those composed of like

atoms, since the latter case has certain specific properties. In the present sec-

tion we shall assume that the molecule consists of unlike atoms.

The energy level of a diatomic molecule is, to a certain approximation, the

sum of three independent parts : the electron energy (which includes also the

energy of the Coulomb interaction of the nuclei in their equilibrium position

and will be measured from the sum of the energies of the separated atoms),

the rotational energy, and the vibrational energy of the nuclei within the

molecule. For a singlet electronic state, these levels may be written*

evK = eo+ fi(o(v+ ±)+WK(K+ l)/27, (47.1)

where e is the electron energy, /fco the vibrational quantum, v the vibrational

quantum number, K the rotational quantum number (angular momentum of

the molecule), I = m'r 2 the moment of inertia of the molecule (m' =
mim 2/(mi+wz2) is the reduced mass of the two atoms and r the equilibrium

value of the distance between the nuclei).

When the expression (47.1) is substituted in the partition function, the

latter is resolved into three independent factors

:

Z = e-*oiTZ
TOtZvih , (47.2)

where the "rotational" and "vibrational" sums are defined by

^rot = £ (2K+ l)e-^K(K+i)/2Ti f (47< 3)

ZVib = JrH«+i)/r (47.4)
V=

the factor 2K+ 1 in Zrot taking account of the degeneracy of the rotational

levels with respect to the orientations of the angular momentum K. Accord-

ingly, the free energy is the sum of three parts

:

eV /mT\*l*-F= -NT log
5f( Inffi

+Frot+FYih+Ne , (47.5)

t As examples, the temperatures /di6S /A: for some diatomic molecules are H 2 52,000°,

N 2 85,000°, 2 59,000°, Cl 2 29,000°, NO 61,000°, CO 98,000°.

% See Quantum Mechanics, §82.
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where m = nn+

m

2 is the mass of the molecule. The first term may be called

the translational part FtT
(since it arises from the degrees of freedom of the

translational motion of the molecules), and

Frot
= -NT log Zrot , Fvlb = -NT log Zvib (47.6)

the rotational and vibrational parts. The translational part is always given

by a formula of the type (43.1) with a constant specific heat c
tr
= 3/2 and

chemical constant

t«--T ,0
«2iF-

(477)

The total specific heat of the gas is the sum of several terms:

cv ~ ctr+ crot+ cvib' (47.8)

cp = ctt+cTOt+ c vii) + l,

which arise respectively from the thermal excitation of the translational

motion of the molecule, its rotation and the vibrations of atoms within

the molecule.

Let us next calculate the rotational free energy. If the temperature is so

high that T» h2/2I (i.e. the "rotational quantum" #72/ is small compared

with TV, then the terms with large K are the most important in the sum (47.3).

For large values of K, the rotation of the molecule is quasi-classical. In this

case, therefore, the partition function Zrot
can be replaced by the corre-

sponding classical integral

:

ZTOt= jV £
<M) 'T drrot ,

(47.9)

where e(M) is the classical expression for the kinetic energy of rotation as

a function of the angular momentum M. Using a system of co-ordinates f

,

% C rotating with the molecule, with the C-axis along the axis of the molecule,

and bearing in mind that a diatomic molecule has two rotational degrees of

freedom and the rotational angular momentum of a linear mechanical system

is perpendicular to its axis, we can write

e(M) = (Mf+ Mfi/H.

The element drrot is the product of the differentials dAff , dM„ and the differen-

tials d</)v d(j>
v
of the "generalised co-ordinates" corresponding to Aft , Mv

(i.e. the infinitesimal angles of rotation about the I and r\ axes), divided by

(2nh)2.t The product of two infinitesimal angles of rotation about the I and

r\ axes is just the element of solid angle do
c
for the direction of the third axis

t In practice this condition is always satisfied for all gases except the two isotopes of

hydrogen. As examples, the values of hzllkl are: H 2 85.4°, D 2 43°, HD 64°, N 2
2.9°,

2 2.1°, Cl 2 0.36°, NO 2.4°, HC1 15.2°.

t It must be remembered that this notation is to some extent arbitrary, since d<fe and

d<£,j are not total differentials of any function of the position of the axes.
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C, and integration over the solid angle gives An. Thus
1-

Zrot ~
(27

4m r r r i

dAf* dAf^ = 2ITJW

Hence the free energy is

FTOt = -NT log T-NT log (2//«*). (47.10)

Thus, at the relatively high temperatures under consideration, the rotational

part of the specific heat is a constant, crot = 1, in accordance with the general

results of the classical treatment in §44 (£ for each rotational degree of free-

dom). The rotational part of the chemical constant is £rot = log (2///*
2
). We

shall see below that there is a considerable range of temperatures over which
the condition T^> fp/21 holds and at the same time the vibrational part of

the free energy, and therefore the vibrational part of the specific heat, are

zero. Over this range the specific heat of a diatomic gas c
v
= c

tr
+crot , i.e.

c„ = 5/2, cp = 7/2, (47.11)

and the chemical constant £ = £tT+CTOt :

C = log [(2///*
5
)(m/27t)3/2]. (47.12)

In the opposite limiting case of low temperatures, T« /z
2
/2/, it is sufficient

to retain the first two terms of the sum:

Zrot = l+3e-ft'//T

and for the free energy we have in the same approximation

Frot = -3NTe-viIT
. (47.13)

Hence the entropy is

3NH2

Srot =
-jf-

e-*"T(l+IT/IP) (47.14)

and the specific heat is

crot - 3N(fi*/IT)2e-*'i*T, (47.15)

Thus the rotational entropy and specific heat of the gas tend to zero essen-

tially exponentially as T -* 0. At low temperatures, therefore, a diatomic gas

behaves like a monatomic one; both the specific heat and the chemical con-

stant have the same values as in a monatomic gas of particles of mass m.

t This value of Z
rot can also be derived in another way: assuming that the numbers

K in the sum (47.3) are large and replacing the summation by integration with respect to
K, we have

* J2Ke-
Kih2

'2IT dK=2TIIh\
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In the general case of arbitrary temperatures the sum Zrot must be cal-

culated numerically. Fig. 3 shows crot as a function of ITIfh2 . The rotational

specific heat has a maximum of 1.1 at T = 0.81(#2/2/), and then tends asymp-

totically to the classical value l.
f
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§48. Diatomic gases with molecules of like atoms. Rotation of molecules

Diatomic molecules consisting of like atoms have certain specific proper-

ties which necessitate changes in some of the formulae derived in §47.

First of all, let us consider the limiting case of high temperatures, where

a classical treatment is possible. Since the two nuclei are identical, two oppo-

site positions of the axis of the molecule (differing only in that the two nuclei

are interchanged) now correspond to the same physical state of the molecule.

The classical partition function (47.9) must therefore be halved, and so the

chemical constant becomes

Crot = log (//*«); (48.1)

accordingly the factor 2 disappears from the argument of the logarithm in the

sum ttr+trot (47.12).

More important changes are needed at temperatures where the quantum
treatment has to be used. Since in practice the entire problem is of interest

only in its application to the two isotopes of hydrogen (H2 and D 2), we shall

consider these gases in what follows. The requirement of quantum-mechanical

t An asymptotic expansion of the thermodynamic quantities for large values of 277/ ft*

may be obtained. The first two terms of the expansion for the specific heat are

Crot = 1 +
45I277J

•

It must be remembered, however, that this expansion gives only a poor approximation to
the function cTOt(T).
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symmetry in the nuclei results in the electronic state 1S
f,

+
(the ground state

of the hydrogen molecule) having rotational levels of different nuclear spin

degeneracy for even and odd values of K: levels with even and odd K respec-

tively occur only for even and odd total spin of the two nuclei, and have

relative degrees of degeneracy gg = i/(2i+ 1), gu = (i+ l)/(2z'+ 1) for a half-

integral spin i of the nuclei, and gg = (i+ 1)/(2/+ 1), gu = i/(2i+ 1) for inte-

gral /. For hydrogen there is an accepted terminology whereby the molecules in

states of greater nuclear statistical weight are called orthohydrogen molecules,

and those in states of smaller statistical weight are called parahydrogen

molecules. Thus for the H2 and D 2 molecules the statistical weights are

h 2 a = i) f

ortho *« = * d 2 a = i)
|

ortho ** =
f

•

Ipara gg = f, [para gu = f

.

The suffix g denotes that the molecule has an even total nuclear spin (0 for

H2, or 2 for D 2) and even rotational angular momenta K; the suffix u

signifies odd total nuclear spins (1 for H 2 and D 2) and odd values of K.

Whereas, in molecules with unlike nuclei, the nuclear degrees of degeneracy

of all the rotational levels are the same, and so the allowance for this degener-

acy simply gives an unimportant change in the chemical constant, here it

causes a change in the form of the partition function, which must now be

written*

^rot = gg
Z
g+guZu , (48.2)

where

Z
g
= £ (2K+l)e-*1KlK+»l*IT

,

K=0,2, ...

Zu = X (2K+l)e-W+»l*IT
.

Similarly the free energy becomes

iV0t = -ATTlog (ggZg+ guZu), (48.4)

and the remaining thermodynamic quantities are likewise changed. At high

temperatures,

Z
g
= Zu = 2-Zrot = TI\h ,

so that the previous classical expression is obtained for the free energy, as it

should be.

As T -* the sum Z
g
tends to unity and Zu tends exponentially to zero;

at low temperatures, therefore, the gas behaves as if monatomic (the specific

heat crot = 0) and the chemical constant simply contains a "nuclear part"

£nuc
= loS 8g-

t See Quantum Mechanics, §86.

X The normalisation of the nuclear statistical weights which we use (such that £„+#„= 1)

signifies that the entropy is measured from log (2/+ l)
2

, in accordance with the condition

stated at the end of §46.

(48.3)
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The above formulae relate, of course, to a gas in complete thermal equi-

librium. In such a gas the ratio of the numbers of molecules of parahydrogen

and orthohydrogen is a definite function of temperature, which from the

Boltzmann distribution is

Xn t
= Northo-Hs/^para-H* = guZJggZg = 3ZU/Zff

,

(48.5)

1/*D, = Northo-D,ANpara-D* = gg
Z

g/guZu = 2Z
g
/Zu .

As the temperature varies from to °°, the ratio xHj varies from to 3,

and xDt from to \ (at T = all the molecules are, of course, in the state

with the lowest value of K, namely K = 0, corresponding to pure para-H2

and ortho-D2).

It must be borne in mind, however, that the probability of a change in the

total nuclear spin in a collision between molecules is very small. The mole-

cules of orthohydrogen and parahydrogen consequently behave practically as

different modifications of hydrogen and are not1" converted into each other.

In practice, therefore, we are concerned not with a gas in equilibrium but with

a non-equilibrium mixture of the ortho and para modifications, the relative

amounts of which have given constant values. X The free energy of such a

mixture is equal to the sum of the free energies of the two components.

In particular, for x = ~ (pure ortho-H2 or para-D 2) we have

Frot = -NT log (guZu).

At low temperatures (h2/2IT^> 1) only the first term in the sum need be

retained in Zu , so that Zu = 3e_ft2//T, and the free energy is

FTOt
= Nn*II-NT\of>(3gu).

This means that the gas will behave as if monatomic (crot = 0), the chemical

constant including an additional term log (3gJ, and the energy a constant

term Nh2
/I, corresponding to the rotational energy of all the molecules, with

K=l.

§49. Diatomic gases. Vibrations of atoms

The vibrational part of the thermodynamic quantities for a gas becomes

important at considerably higher temperatures than the rotational part,

because the intervals in the vibrational structure of the terms are large com-

pared with those in the rotational structure."

t In the absence of suitable catalysts.

t For an ordinary gas which has been at room temperature for a considerable time the

ratios are xSt = 3, xd2
= !•

II As examples, the values of tico/k for some diatomic gases are H 2 6100°, N2 3340°,

2 2230°, NO 2690°, HC1 4140°.
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We shall suppose, however, that the temperature is not large enough to
excite the very high vibrational levels. Then the vibrations are small, and
therefore harmonic, and the energy levels are given by the usual expression
fkQ(v+$) as in (47.4).

The calculation of the vibrational partition function Zvlb (47.4) is ele-

mentary. Owing to the very rapid convergence of the series, the summation
may be formally extended to v = °°. We shall measure the energy of the
molecule from the lowest vibrational level (v = 0), i.e. include %h<o in the

constant e in (47.1). Then

Zvib = f>-"«/T = 1/(1 -e-*"*),
V=0

and hence the free energy is

Fvib =NT log(l-«-«-/T),

the entropy

•SVib = -Nlogil-e-tol^+Nfco/Tieto'T-l),

the energy

Evib = Nfuo/(e^lT-l)
}

and the specific heat

_ /fjcpy e*m lT
cvib oha>IT_\\i.DS

(49.1)

(49.2)

(49.3)

(49.4)

Fig. 4 shows cvlb as a function of Tjhco
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Fig. 4

At low temperatures (fko » r) all these quantities tend exponentially to

zero:

Fvib = -NTe-^lT,

Cyib = (fico/T)2e-*a>i T
.

At high temperatures (ftio <sc T) we have

*Vib = -iVr log T+iVr log (hco)-N-%ha>, (49.6)

(49.5)
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corresponding to a constant specific heat cvib = l
f and a chemical constant

£Vib = - log (&»)• Adding these to the values (47.11), (47.12), we find that
at temperatures T» hco the total specific heat of a diatomic gas is*

cv = 7/2, cp = 9/2, (49.7)

and the chemical constant is

3/2"

(49.8)<-*[»(£)
the factor (2) must be omitted for molecules consisting of like atoms. The
first two terms in the expansion of Evib are

Evib = NT-%Nhco. (49.9)

The constant term -%Nh(o appears here because the energy is measured from
the lowest quantum level (i.e. from the energy of the "zero-point" vibra-
tions), whereas the classical energy would have to be measured from the
minimum of the potential energy.

The expression (49.6) for the free energy can also be derived classically, of
course, since for r» fko the important quantum numbers v are the large
ones, where the motion is quasi-classical. The classical energy of small oscilla-

tions of frequency co is

7,2

«vib(A q) = ^f +Wco2
q
2
,

where m' is the reduced mass. The integration with this expression for e gives
for the partition function

OO M

OO OO

which corresponds to (49.6)" ; owing to the rapid convergence of the integral,
the integration with respect to q may be taken from - °o to oo.

At sufficiently high temperatures, when vibrations with large v are excited,
the anharmonicity of the vibrations and their interaction with the rotation of
the molecule may become important. These effects are in principle of the same
order of magnitude. Since v is large, the corresponding correction to the
thermodynamic quantities may be determined classically.

Let us consider a molecule as a mechanical system of two particles inter-
acting in accordance with the law U(r) in a co-ordinate system in which their
centre of mass is at rest. The energy (Hamiltonian) which gives a precise

t Again in accordance with the classical results of §44.

Til
A
l

Fi8
'
4 Sh°WS

' Cvib actually approaches its limiting value of 1 when T a* ftco; for
T/ftco - 1, c, Ib = 0.93. As a practical condition for the applicability of the classical ex-
pressions we may write T * fim/3.

II The same result is obtained on replacing the summation over v by an integration.
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classical description of the rotation and vibrations of the system is the sum

of the kinetic energy (the energy of a particle with the reduced mass m') and

the potential energy U(r). The partition function, after integration over the

momenta, reduces to an integral over the co-ordinates: e~ U{r)IT dV, and

after integration over the angles (in spherical polar co-ordinates) there

remains the integral

J
e-U(r)ITr2^r ^

The approximation corresponding to independent harmonic vibrations and

rotation of the molecule is obtained by putting U{r) = Uo+W^ir-ro)2 and,

in the integration, replacing the slowly varying factor r2 by r 2
,
where r is the

equilibrium distance between the two particles: U = U(r ). In order to take

into account the anharmonicity of the vibrations and their interaction with

the rotation we now write

U{r)= £/ + im'coVo2(!
2 -a£3 +j3£

4
),

(49.11)

where £ = r/r -l, and a and /S are constants*, and then expand the whole

integrand in powers of £, separating the factor exp { - (Uo

+

im'ct>2/- 2
£
2)/r}. In

the expansion, only those terms need be retained which after integration give

the highest and next highest powers of the temperature; the integration over

I is taken from -«to °o. The zero-order term in the expansion gives the

usual value of the partition function, and the remaining terms give the

required correction. Omitting the calculations, we shall state the final result

for the correction to the free energy:

1 r
i + 3a--i5+^a2l. (49.12)

anh = -NT2

2Ico2

Thus the anharmonicity of the vibrations and their interaction with the rota-

tion give a correction to the free energy which is proportional to the square of

the temperature. Accordingly the specific heat has a further term proportional

to the first power of the temperature.

§50. Diatomic gases. The effect of the electronic angular momentum

Some types of molecule, though not many, have a non-zero orbital angular

momentum or spin in their electronic ground state.

The presence of a non-zero orbital angular momentum A causes a twofold

degeneracy of the electronic term, corresponding to the two possible directions

t These constants can be expressed in terms of the spectroscopic constants of the mole-

cule; see Quantum Mechanics, §82.
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of this angular momentum with respect to the axis of the molecule.* This

affects the thermodynamic quantities : because of the doubling of the par-

tition function, a quantity

Ci = log2 (50.1)

is added to the chemical constant.

The presence of a non-zero spin S causes a splitting into 2S+ 1 levels, but

the intervals in this fine structure are so small (when A = 0) that they can
always be neglected in calculating the thermodynamic quantities. The pres-

ence of the spin simply increases the degree of degeneracy of each level by a
factor 2S+ 1, and so the chemical constant is increased by

Cs = log (25+1). (50.2)

The fine structure which occurs when S ?* 0, A ^ requires special con-
sideration. Here the fine-structure intervals may reach values which have to be
taken into account in calculating the thermodynamic quantities. We shall

derive the formulae for the case of a doublet electron term.* Each component
of the electron doublet has its vibrational and rotational structure, the para-
meters of which may be regarded as the same for each component. The
partition function (47.2) therefore contains a further factor

Zei = go+gie-*lT
,

where go, gi are the degrees of degeneracy of the components of the doublet,
and A their separation. The free energy must accordingly contain an "electronic
part"

Fel = -NT log (g*+gx
e-*lT).

(50.3)

We may also give the "electronic" specific heat which must be added to the
other parts of the specific heat:

= (A /T)2
Cel

[l+<go/gde*lT\[i + (gl/go)e-4tT]

• (50.4)

In the limits T - and T - °°, c
el

is of course zero, and it has a maximum
at some temperature T ~ A.

t Strictly speaking, the term is split into two levels (A-doubling), but the separation
between these is so small that it may be entirely neglected here.

t This case occurs for NO; the electronic ground state of theNO molecule is the doublet
"1/2, 3/2 with width A = 178°. Each component of the doublet is doubly degenerate.
An unusual case occurs for oxygen. The electronic ground state of the 2 molecule is a

very narrow triplet «E, the width of which may be neglected, but it happens by chance that
the next (excited) state »J (doubly degenerate) is relatively near, at A = 11,300°, and at
high temperatures it may be excited, with a consequent effect on the thermodynamic
quantities.
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PROBLEM
Determine the correction to the free energy for oxygen due to the first excited electronic

state of the 2 molecule (see the last footnote). The temperature is large compared with

the vibrational quantum, but small compared with the distance A between the ground
state 3S and the excited state XA.

Solution. The partition function is

ha> h2 fico h 2 '

where the two terms on the right are the partition functions for the ground and excited

states, each of which is the product of electronic, vibrational and rotational factors. The
required correction to the free energy is therefore

F
t
=-NT10Bil+¥£e-*l')*-NT.

lA \ 3(o'r 2
J

2cor
'2

c
_

3a/r„2

All

where co, r , co', r ' are the frequencies and equilibrium distances between the nuclei in the

ground and excited electronic states.

§51. Polyatomic gases

The free energy of a polyatomic gas, like that of a diatomic gas, can be

written as the sum of translational, rotational and vibrational parts. The trans-

lational part, as before, is characterised by values of the specific heat and

chemical constant

ctT = 3/2, Cte = (3/2) log (m/2nHF). (51.1)

Owing to the large moments of inertia of polyatomic molecules (and the

corresponding smallness of their rotational quanta) their rotation may always

be treated classically.* The polyatomic molecule has three rotational degrees

of freedom and three principal moments of inertia I\, h, h, which are in

general different; its kinetic energy of rotation is therefore

M£_ MJ Mr2

~2h
+

212
+

21,
rot =— + -Z?- + -*7-, (51 -2>

where I, rj, £ are co-ordinates in a rotating system whose axes coincide with

the principal axes of inertia of the molecule; for the present we disregard

the special case of molecules consisting of collinear atoms. This expression is

to be substituted in the partition function

Zrot= (V e'^ T dTrot , (51.3)

where

drrot = t^t3 AMU dM„ dM: d^ d<jf>„ d<£: ,

t Rotation quantisation effects would be observable only in methane CH4 , where they

should occur at temperatures of about 50°K; see the Problem at the end of this section.
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and the prime denotes, as usual, that the integration is to be taken only over

the physically different orientations of the molecule.

If the molecule has axes of symmetry, rotations about these axes leave the

molecule unchanged, and amount to an interchange of identical atoms. It is

clear that the number of physically indistinguishable orientations of the mole-

cule is equal to the number of possible different rotations about the axes of

symmetry, including a rotation through 360° (the identical transformation).

Denoting this number1" by a, we can take the integration in (51.3) simply over

all orientations and divide by or.

In the product d<^ d<^ d^
c
of three infinitesimal angles of rotation,

d0£ d<j>
v
may be regarded as an element do

c
of solid angle for directions of the

C-axis. The integration over o
c

is independent of that over rotations d$
c

about the C-axis, and gives 4n. The integration over
<f>c gives a further 2n.

Integrating also over Af
{, Mv , Mc

from - °° to «,, we finally have

8tt2

Zrot =
a^hthf

^WKhW* = (2J)3/ViW2M3
.

Hence the free energy is

F.-l^iogr-ivnog '8^"2

. (5..4)

Thus we have for the rotational specific heat, in accordance with §44,

Cvox = 3/2, (51.5)

and the chemical constant is

Crot = lQg
off •

(51 '6>

For a linear molecule, i.e. one where all the atoms are collinear, there are,

as in the diatomic molecule, only two rotational degrees of freedom and one
moment of inertia /. The rotational specific heat and the chemical constant
are, as in a diatomic gas,

cTOt = K Crot = log (2//0#2), (51.7)

where a = 1 for an asymmetric molecule (such as NNO) and a = 2 for a
molecule symmetrical about its midpoint (such as OCO).
The vibrational part of the free energy of a polyatomic gas is calculated

in a similar way to that for a diatomic gas, given above. The only difference

is that a polyatomic molecule has not one but several vibrational degrees of
freedom: a non-linear molecule of n atoms clearly has rvib

= 3n-6 vibra-
tional degrees of freedom, while for a linear molecule of n atoms rvib

=
3«-5 (see §44). The number of vibrational degrees of freedom determines

t For instance, in HzO (an isosceles triangle) a = 2, in NH3 (an equilateral triangular
pyramid) a = 3, in CH4 (a tetrahedron) a = 12, and in C6H6 (a regular hexagon) a = 12.
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the number of normal modes of vibration of the molecule, to each of which

there corresponds a frequency <oa (the suffix a numbering the normal modes).

It must be remembered that some of the frequencies co
a may be equal, in

which case the frequency concerned is said to be degenerate.

In the harmonic approximation, where the vibrations are assumed small

(only temperatures for which this is so will be considered), all the normal

modes are independent, and the vibrational energy is the sum of the energies

of the individual modes. The vibrational partition function therefore falls

into a product of partition functions of the individual modes, and the free

energy FxU) is a sum of expressions of the type (49.1):

*Vib = NTZ\og(l-e-
hlu«IT

). (51.8)
a

Each frequency appears in this sum a number of times equal to its degeneracy.

Similar sums are obtained for the vibrational parts of the other thermody-

namic quantities.

Each of the normal modes gives, in its own classical limit (r» ficoj, a

contribution cvib
(a) = 1 to the specific heat; for T greater than the greatest

/fcoa we should obtain

Cyib = >Vib- (5L9)

In practice, however, this limit is not reached, since polyatomic molecules

usually decompose at considerably lower temperatures.

The various frequencies coa for a polyatomic molecule generally range over

a very wide interval. As the temperature increases, the various normal modes

successively contribute to the specific heat. In consequence the specific heat

of polyatomic gases may often be regarded as approximately constant over

fairly wide intervals of temperature.

We may mention the possibility of a curious change from vibration to

rotation, an instance of which is afforded by the ethane molecule C2H6 . This

molecule consists of two CH3 groups at a certain distance apart and oriented

in a certain way to each other. One of the normal vibrations of the molecule is

a "torsional" vibration, in which one of the CH3 groups is twisted relative to

the other. As the energy of the vibrations increases, their amplitude increases

and ultimately, at sufficiently high temperatures, the vibration becomes a free

rotation. The contribution of this degree of freedom to the specific heat,

which is approximately 1 when the vibrations are fully excited, therefore

begins to decrease as the temperature increases further, approaching asymptot-

ically the value y typical of a rotation.

Finally, it may be mentioned that, if the molecule has a non-zero spin S

(for example, the molecules NOa and C10 2), the chemical constant includes

a term

Cs = log (25+1). (51.10)
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PROBLEM

Determine the rotational partition function for methane at low temperatures.

Solution. As already mentioned in the first footnote to this section, a quantum cal-

culation of Zrot for methane is required at sufficiently low temperatures.

The CH4 molecule is a tetrahedron of the spherical-top type, and so its rotational levels

are fi
2J(J+ 1)/2J, where / is the common value of the three principal moments of inertia,

and / the rotational quantum number. Since the spin i of the H nucleus is $, and that of
the C12 nucleus is zero, the total nuclear spin of the CH4 molecule may be 0, 1 or 2, the

corresponding nuclear statistical weights being 1 , 3 or 5.t For any given value of J there are

definite numbers of states corresponding to values of the total nuclear spin. The following
table gives these numbers for the first five values of /.

Nuclear spin

/=
1

2 2

3

4 2

The value of the sum Zrot which is obtained by taking into account the total degree of
degeneracy with respect to orientations of the rotational angular momentum and nuclear
spin must be divided by 16 if the entropy is to be measured from the value log (2/+ 1)

4 =
log 16 (cf. the second footnote to §48). The result is

1 2
- 1

1 -

1 -

2 1

2 1

T6+T6 •""""+M
*-"""+B *-"w+

TT

t See Quantum Mechanics, §105, Problem 5.



CHAPTER V

THE FERMI AND BOSE DISTRIBUTIONS

§52. The Fermi distribution

If the temperature of an ideal gas (at a given density) is sufficiently low,

Boltzmann statistics becomes inapplicable, and a different statistics must be

devised, in which the mean occupation numbers of the various quantum states

of particles are not assumed small.

This statistics, however, differs according to the type of wave functions by

which the gas is described when regarded as a system ofN identical particles.

These functions must be either antisymmetrical or symmetrical with respect

to interchanges of any pair of particles, the former case occurring for particles

with half-integral spin, and the latter case for those with integral spin.

For a system of particles described by antisymmetrical wave functions,

PaulVs principle applies: in each quantum state there cannot simultaneously

be more than one particle. The statistics based on this principle is called

Fermi statistics, or Fermi-Dirac statistics. t

As in §37, we shall apply the Gibbs distribution to the set of all particles

in the gas which are in a given quantum state ; as already mentioned in §37,

this may be done even if there is an exchange interaction between the particles.

We again denote by Qk the thermodynamic potential of this set of particles;

by the general formula (35.3),

Qk = -riogX(^- e* )/T
)

r,*
> (52.1)

since the energy of nh particles in the A;th state is just nkek . According to

Pauli's principle, the occupation numbers of each state can take only the

values and 1. Hence

Qk = -T\og(l+e^- e^T
).

Since the mean number of particles in the system is equal to minus the

derivative of the potential Q with respect to the chemical potential /x, the

required mean number of particles in the A;th quantum state is here obtained

t It was proposed by Fermi for electrons, and its relation to quantum mechanics was
elucidated by Dirac (1926).

144



§53 The Bose Distribution 145

as the derivative

«A = —
or finally

dp i+ c(*-e*)/r»

— 1

** =
g(«*-.)/r+1

' (52.2)

This is the distribution function for an ideal gas obeying Fermi statistics,

which for brevity will be called a Fermi gas. When e(M
- e*),T <sc 1 it tends

to the Boltzmann distribution function, as it should.*

The Fermi distribution is normalised by the condition

e(ek -t*)iT+ 1
= N> (52.3)

ft

where N is the total number of particles in the gas. This equation implicitly

determines the chemical potential as a function of T and N.
The thermodynamic potential Q of the gas as a whole is obtained by sum-

mation ofQk over all quantum states:

Q = -r£ log (1 +*<"-*>/*). (52.4)
ft

§53. The Bose distribution

Let us now consider the statistics obeyed by an ideal gas consisting of
particles described by symmetrical wave functions, namely Bose statistics or
Bose-Einstein statistics. $

The occupation numbers of the quantum states when the wave functions
are symmetrical are unrestricted and can take any values. The distribution
function may be derived as in §52; we put

Qk = -Tlog £ (e<"- e*>/r
)
n*.

n*=0

This geometric progression is convergent only if e("- St)'T < 1. Since
this condition must be satisfied for all ek , including ek = 0, it is clear that
we must certainly have

P < 0. (53.1)

t In Boltzmann statistics, the expression (52.1) must be expanded in powers of the small
quantity e^-*h)lT

; the first term of the expansion is

whence differentiation with respect to fi again gives the Boltzmann distribution formula.
t This was introduced by Bose for light quanta, and generalised by Einstein (1924).
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Thus in Bose statistics the chemical potential is always negative. In this

connection it may be recalled that in Boltzmann statistics the chemical poten-

tial is always negative, and large in absolute value ; in Fermi statistics, fi may

be either negative or positive.

Summation of the geometric progression gives

Qh
= riog(l-e<"- E*>' T

).

Hence we find the mean occupation numbers nh = -dQJdfj,:

JT = ! . (53.2)

This is the distribution function for an ideal gas which obeys Bose statistics

(or, as we shall call it for brevity, a Bose gas). It differs from the Fermi

distribution function in the sign of unity in the denominator. Like that func-

tion, it tends of course to the Boltzmann distribution function when eif" ek)IT

« 1. The total number of particles in the gas is given by the formula

N = V l
- (53.3)

and the thermodynamic potential Q of the gas as a whole is obtained by

summation ofQh over all quantum states

:

Q = r£ log (1 -£?<"-*>/*> (53.4)

§54. Fermi and Bose gases not in equilibrium

As in §40, we can calculate the entropy also for Fermi and Bose gases not in

equilibrium, and again derive the Fermi and Bose distribution functions from

the condition that the entropy is a maximum.

In the Fermi case there can be no more than one particle in each quantum

state, but the numbers N
j
are not small, and are in general of the same order

of magnitude as the numbers Gr (The notation is as in §40.)

The number of possible ways of distributing N
j
identical particles among

G states with not more than one particle in each is just the number of ways

of selecting N
j
of the G

j
states, i.e. the number of combinations of G

j
things

JV. at a time. Thus
ATj = Gil/Njl (Gj-N^l (54.1)

Taking the logarithm of this expression and using for the logarithm of each

factorial the formula log TV! = Mog (N/e), we find

S= YJ
{G

j
log Gi-Ni log Nj-iGi-Nj) log (<?,-#,)}. (54.2)
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Again using the mean occupation numbers of the quantum states, JTj = Nj/Gj,

we finally have the following expression for the entropy of a Fermi gas not in

equilibrium:

s = -E^fylog^+(l-^)log(l-^)]. (54.3)
i

From the condition for this expression to be a maximum according to

(40.8) we easily find that the equilibrium distribution is given by the formula

n~= 1/(^+^ + 1),

which is the Fermi distribution, as it should be.

Finally, for Bose statistics, each quantum state may contain any number of

particles, so that the statistical weight ATj is the total number of ways of

distributing JV
3
- particles among G

j
states. This number is

f

AT, = (Gj+N,- 1) !/(<?,-- 1) IN, !. (54.4)

Taking the logarithm of this expression and neglecting unity in comparison
with the very large numbers G

j
+N

j
and Gjt we obtain

S = I {(Gj +Nj) log (Gj +Nj)-Nj log Nj- Gj log Gj}. (54.5)
j

In terms of the numbers «
3
we can write the entropy of a Bose gas not in

equilibrium as

S = I Gj[(l +^) log (1 +^)-^log h~]. (54.6)
j

It is easily seen that the condition for this expression to be a maximum in

fact gives the Bose distribution.

The two formulae (54.2) and (54.5) for the entropy naturally tend, in the

limiting case Nj <sc Gjt to the Boltzmann formula (40.3), and the statistical

weights (54.1) and (54.4) for Fermi and Bose statistics tend to the Boltzmann
expression (40.2); to see this, we must put Gj\ ss (Gj-N)\Gf\ (Gj+Nj -1)!

^ (Gj — iy.Gj**. It must be remembered, however, that, in going to the limit,

terms of order Nj/Gj are neglected in the statistical weights (as may easily be

tThe problem is to find the number of ways of distributing N
} identical balls among G

}
urns. Let us imagine the balls as a line ofN

}
points, and number the urns; let us then ima-

gine the latter to be separated by G}
- 1 vertical strokes placed at intervals along the line

of points. For example, the diagram

represents ten balls distributed among five urns : one in the first, three in the second, none
in the third, four in the fourth and two in the fifth. The total number of places (occupied
by points and strokes) in the line is Gj+N

}
-\. The required number of distributions of the

balls among the urns is the number of ways of choosing G
}
— 1 positions for the strokes, i.e.

the number of combinations of Nj + G}
- 1 things G, - 1 at a time, and this gives the result

(54.4).
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verified), and these terms are not in general small; but when the logarithm

is taken these terms give a correction to the entropy which is of the relatively

small order N^/Gj.

Finally, we shall give a formula for the entropy of a Bose gas in the impor-

tant limiting case where the number of particles in each quantum state is

large (so that A^ :» Gp Wj :» 1). We know from quantum mechanics that this

case corresponds to the classical wave picture of the field. The statistical

weight (54.4) becomes
ATj =JV

j
G*-V(G,-l)! (54.7)

and the entropy is

S = ld
G

j
\og(eN

j
/G

j
). (54.8)

i

We shall make use of this formula in §65.

§55. Fermi and Bose gases of elementary particles

Let us consider a gas consisting of elementary particles, or of particles

which under certain conditions may be regarded as elementary. As has

already been mentioned, the Fermi or Bose distribution need not be used for

ordinary atomic or molecular gases, since these gases are in practice always

described with sufficient accuracy by the Boltzmann distribution.

All the formulae derived in the present section are exactly similar in form

for both Fermi and Bose statistics, differing only as regards one sign. The

upper sign will always correspond to Fermi statistics and the lower sign to

Bose statistics.

The energy of an elementary particle is just the kinetic energy of its transla-

tional motion, which is always quasi-classical. We therefore have

« = <J>x
2
+Pv

2
+Pz

2
)l2m > <55 - 1 )

and in the distribution function we make the usual change to the distribution

in the phase space of the particle. Here it must be borne in mind that, for a

given value of the momentum, the state of the particle still depends on the

orientation of its spin. Hence the number of particles in a volume element

dpx dpy dpz
dV in phase space is found by multiplying the distribution (52.2)

or (53.2) by

g dr = g dpx dpy dpz dV/(2nfi)
3

,

where g = 2S+ 1 (5 being the spin of the particle), giving

d*=
e(
,-*£±1

- (5«>

Integrating over V (which simply involves replacing dV by the total volume
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V of the gas) we find the distribution for the components px , py , pz
of the

particle momentum; using spherical polar co-ordinates in momentum space

and integrating over angles, we find the distribution for the absolute magni-

tude of the momentum

:

am gVp2 dp (m\

where e = pz/2m, or the energy distribution

gVm^ Vede
aiy, e 2ll2

7i
2
fi
3 e(°-^l T±l

' K }

These formulae take the place of the classical Maxwellian distribution.

Integrating (55.4) with respect to e, we obtain the total number of particles

in the gas

:

oo

gVm312 C y/edeN =
i2ll27iW] e(

e-")/ T±l
o

In terms of a new variable of integration z = e/T, this equation can be written

N gimTfi* f ^zdz

I2x'hiW
J

ez-^ T±l
o

(55.5)

This formula implicitly determines the chemical potential yt, of the gas as a

function of its temperature T and density Nj V.

With the same change from summation to integration in formulae (52.4),

(53.4), we find for the potential Q the expression

2ll2nW

Integration by parts gives

® = +^SJv £ log(l±^-^de .

Q _ 2 gVm31* C e3/2 dg

T 2vhiW e(e-^)/T±1

oo

J
(55.6)

This expression is the same, apart from the factor — -§-, as the total energy of

the gas,

C eVm312 C e3/2 de
E =

6 6

Since Q = —PV, we have therefore

PV = -l-E. (55.8)
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This result is exact, and so must hold good in the limiting case of a Boltz-

mann gas also; and in fact, on substituting the Boltzmann value E = 3NT/2,

we obtain Clapeyron's equation.

From formula (55.6), substituting s/T = z, we obtain

Q = -pV = VT**MT), (55.9)

where/is a function of a single variable, i.e. Q/Vis a homogeneous function

of order 5/2 in ft and T.f Hence

S 1 /dQ\ J N 1 idQ
r^erl and

V VVdfj, T,V

are homogeneous functions of order 3/2 in \x and T, and their ratio S/N is a

homogeneous function of order zero, i.e. S/N = (j>(fi/T). Hence we see that

in an adiabatic process (S = constant) the ratio fi/T remains constant, and

since N/VT312
is also a function of fx/T only we have

VT3/2 = constant. (55.10)

Then (55.9) shows that

PV5I3 = constant, (55.11)

and also T5l2jP = constant. These equations are the same as that of the

Poisson adiabatic (43.9) for an ordinary monatomic gas, but it must be

emphasised that the exponents in (55.10), (55.11) are here unrelated to the

ratio of specific heats, since the relations c
p
/cv

= 5/3 and c
p
— cv = 1 are

not valid.

Formula (55.6), in the form

£.21/2m3/27V2 7 z3/2 dZ6 '

(55.12)
37r2#3

J
ez-^ T±\ >

together with (55.5) determines the equation of state of the gas (in parametric

form, with parameter /i), i.e. the relation between P, Fand T. In the limiting

case of a Boltzmann gas (e^ T <k 1) these formulae give Clapeyron's equa-

tion, as they should. We shall show this by means of a calculation which also

gives the first correction term in the expansion in the equation of state.

For e^ 1'«
1 we expand the integrand in (55.12) as a series of powers of

t If the energy is calculated from (55.9) as

E = Nfi+TS-PV = -ftdQ/dft-TdQ/dT+Q,

we again obtain (55.8).
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e
eIT-z andj retaining only the first two terms, obtain

z3/2 dz -
| z3 /2^/ r- z(l + e^ T

~ z
) dz

1

ez-MlT±\

V^/ T(l+^^/T
)

Substitution in (55.12) gives

If only the first term of the expansion is retained, we obtain precisely the

Boltzmann value of the chemical potential of a monatomic gas (formula

(45.5), where g = 1). The next term gives the required correction, so that we

can put

But the small additions to all the thermodynamic potentials (expressed in

terms of the appropriate variables; see (24.16)) are the same. Hence, express-

ing the correction term in Q in terms of T and V (which can be done to the

same accuracy by means of the Boltzmann expressions), we obtain immedi-

ately the correction to the free energy

:

F-FBol+— VTll2mm
iw.14)

Finally, differentiating with respect to volume, we obtain the required equa-

tion of state

:

nZl2 Nfii
PV=NT 1±-

2g Vimiyi*
(55.15)

The condition for the correction term in this formula to be small is naturally

the same as the condition (45.6) for Boltzmann statistics to be applicable.

Thus we see that the deviations of an ideal gas from classical properties,

occurring when the temperature is lowered at constant density (the gas then

being said to become degenerate), cause in Fermi statistics an increase in

pressure as compared with its value in an ordinary gas ; we may say that in

this case the quantum exchange effects lead to the occurrence of an additional

effective "repulsion" between the particles.

In Bose statistics, on the other hand, the value of the gas pressure changes

in the opposite direction, becoming less than the classical value ; we may say

that here there is an effective "attraction" between the particles.
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§56. A degenerate electron gas

The study of the properties of a Fermi gas at sufficiently low temperatures

is of fundamental significance. As we shall see below, the temperatures con-

cerned may in practice be very high in other respects.

In what follows we shall discuss an electron gas, with a view to the most
important applications of Fermi statistics. For electrons, g = 2, but we shall

avoid substituting this value in the formulae, so that the results will be
directly applicable to other cases also.

Let us first consider an electron gas at a temperature of absolute zero (a

completely degenerate Fermi gas). In such a gas, the electrons will be distrib-

uted among the various quantum states so that the total energy of the gas has

its least possible value. Since no more than one electron can be in each

quantum state, the electrons occupy all states with energies from the least

value (zero) to some greatest value which depends on the number of electrons

in the gas.

The number of quantum states of translational motion of a particle with

absolute magnitude of momentum in the interval from p to p+dp is

Anp2 dp- V/(27iH)3 . Multiplying this by g, we obtain the total number of quan-

tum states with such momenta:

gVp*dpllnW. (56.1)

The number of electrons occupying all states with momenta from zero to

some po is therefore

i2nWy r 6n2h3

o

whence the limiting momentum p is given by

Po
=
\Y) \v)

*' (56,2)

and the limiting energy by

pf /6^y/3^MTx2/3 ,~~
2m=\g) 2m\V] '

^°^en =

This energy has a simple thermodynamic significance. In accordance with

the foregoing discussion, the Fermi distribution function over quantum states,

e(*-,l/r+1 > (56 -4>
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tends to unity as T — for all e < /i and to zero for e > /a, as shown by the

continuous line in Fig. 5. Hence we see that the chemical potential of the gas

at absolute zero is the same as the limiting energy of the electrons

:

(x = e . (56.5)

The total energy of the gas is obtained by multiplying the number of

states (56.1) by p2/2m and integrating over all momenta:

E =
gV

4mn2fP

Pi

J
p*dp gVPo5

lOmnW '

or, substituting (56.2),

_ 3 /6n*\ 2/3^2 A/V\2/3

* = !o(t) m[v) N- (56.6)

Finally, from the general relation (55.8) we find the equation of state of the

gas:

l_/6^2\ 2/3^2 /N\5/3

5 U
i\ 2/3#2 /tyA 5/3

(56.7)

Thus the pressure of a Fermi gas at absolute zero is proportional to the 5/3

power of its density.

Formulae (56.6), (56.7) are approximately valid also at temperatures which
are sufficiently close to absolute zero (for a given gas density). The condition

for them to be applicable (for the gas to be "strongly degenerate") is clearly

that T should be small in comparison with the limiting energy e :

T «(^2/m)(AT/K)2/3. (56.8)

This condition is, as we should expect, the opposite of the condition (45.6) for

Boltzmann statistics to be valid. The temperature defined by the relation

T ^ e is called the degeneracy temperature.

A degenerate electron gas has the peculiar property that it increasingly

approaches the "ideal gas" state as its density increases. This is easily seen as

follows.
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Let us consider a gas consisting of electrons and a corresponding number

of positively charged nuclei which balance the charge on the electrons ; a gas

composed of electrons alone would obviously be entirely unstable, but we

have not mentioned the nuclei hitherto, because the assumption of ideal-gas

properties means that the presence of the nuclei does not affect the thermo-

dynamic quantities for the electron gas. The energy (per electron) of the

Coulomb interaction between the electrons and the nuclei is of the order of

Ze2
/a, where Ze is the nuclear charge and a ~ (ZV/N)ll3

is the mean distance

between the electrons and the nuclei. The condition for an ideal gas is that

this energy should be small compared with the mean kinetic energy of the

electrons, which in order of magnitude is equal to the limiting energy e . The

inequality Ze2/a<^. e , after the substitution of a ~ (ZV/N) 113 and the ex-

pression (56.3) for e
,
gives the condition

Nl V» (e2m/h2fZ\ (56.9)

We see that this condition is more nearly met as the density N/V of the gas

increases. 1
"

PROBLEM
Determine the number of collisions with a wall in an electron gas at absolute zero

(taking g = 2).

Solution. The number of electrons per unit volume with momenta in the interval dp

at an angle to the normal to the wall in the interval dd is 2-27t sin 6 dd p2 dpIQjiKf. The
required number of collisions v (per unit area of wall) is obtained by multiplying by v cos 6

(v = p/m) and integrating with respect to 8 from to \n and with respect to p from to

p . The result is

3(3tt 2
)
1/3 h /N\*l3

16 m \v)

§57. The specific heat of a degenerate electron gas

At temperatures which are low compared with the degeneracy temperature

T , the distribution function (56.4) has the form shown by the broken line in

Fig. 5 : it is appreciably different from unity or zero only in a narrow range of

Values of the energy s close to the limiting energy eo. The width of this "tran-

sition zone" of the Fermi distribution is of the order of T.

The expressions (56.6), (56.7) are the first terms in the expansions of the

corresponding quantities in powers of the small ratio T/T . Let us now

determine the next terms in the expansions.

Formula (55.6) involves an integral of the form

/= J"
f(e)de

J.
e(e-»)!T+ l>

t The degeneracy temperature corresponding to the electron gas density (e2m/ft2
)
3Z2

is

40Z*/3 eV ss 0.5X106Z4
/ 8 degrees.
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where f(e) is a function such that the integral converges ; in (55.6), /(e) = £3 ' 2
.

We transform this integral by the substitution e— fi = Tz

:

1 =

KIT

ez+l
mIT

= T rAtz!» dz+J-f^-±^>dz.
J

e~ z+l
J

ez+l

In the first integral we put l/(e~
z+l) = 1 — l/(e

z+l), obtaining

/=
j
/(e)de_;j%^) dz+r|A^) dz.

In the second of these integrals we replace the upper limit by infinity, sine

HJT :» 1 and the integral is rapidly convergent.
1-

This gives

/ = \f(e)de +T [
f(»+ T*)-Av-Tz)

&z

H oo

f/OOde+rP

We now expand the numerator of the second integrand as a Taylor series of

powers of z and integrate term by term

:

/ =

o

/(£)de+2m^)f^r
o

oo

Substituting the values* of the integrals, we have finally

P 7T2 7JT4

/ = f(e) de +-T>fXn)+— rr"W+ • • - (57.1)
6

J ^ r
360

t This amounts to neglecting exponentially small terms. It must be remembered that the

expansion (57.1) derived below is an asymptotic, not a convergent, series.

t Integrals of this type are calculated as follows

:

oo oo

J 9^r
=
/ z*~ le"

„|o
(-re— dz = i\x) f (-r+i±

= (i-2-)rw £-l,
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The third term in the expansion is given for reference; it will not be needed

here.

Putting / = e3/2 in formula (57.1) and substituting in (55.6), we obtain the

required next term in the expansion of the potential Q at low temperatures

:

Q = Q«-vr g^f2

' (57 '2>

where Q denotes the value ofQ at absolute zero.

Regarding the second term as a small correction to Qq and expressing
fj,

in

it in terms of T and V by means of the "zero-order approximation" (56.5),

we can immediately write down an expression for the free energy (according

to (24.16)):

F = Fo-i£AT2(K/A02/3
, (57.3)

/
Z

\^x = -21
-W*)C(*) (x > 0), (1)

oo

where t(x) = ^ \\n" is the Riemann zeta function.

For x — 1, the expression (1) becomes indeterminate; the value of the integral is

o

For x an even integer (= 2ri) the zeta function can be expressed in terms of the Bernoulli

numbers Bn :

r z 2"- 1 dz 22n~ x -\
r^ = ^—z "*nBn . (3)

J ez+l In
'

o

The following integrals are calculated similarly

:

'—

»

dz

j %._! = r(x)Ux) (x > 1). (4)

For x an even integer (= 2ri),

r z™- 1 dz (2nynBn

J e*-\ An '

K}

o

For reference we shall give the values of the first few Bernoulli numbers and of some

zeta functions

:

Bt
= 1/6, B2

= 1/30, Bz = 1/42, BA = 1/30;

£(3/2) = 2.612, C(5/2) = 1.341, C(3) = 1.202,

£(5) = 1.037, T(3/2) = iV», A5/2) = ls/n.
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using for brevity the notation

' -m (57.4)
(gn\ 2 lz m

w
Hence we find the entropy

S = PNT(V/N)W, (57.5)

specific heat*

C = pNTiV/Nyw, (57.6)

and energy of the gas

:

E = E +±pNT*(V/N)w

= E [l+0.0713g*l3(tnT/n2
)
2(V/Nyisl (57.7)

Thus the specific heat of a degenerate Fermi gas at low temperatures is

proportional to the temperature.

§58. A relativistic degenerate electron gas

As the gas is compressed, the mean energy of the electrons increases (eo

increases) ; when it becomes comparable with mc2
, relativistic effects begin to

be important. Here we shall discuss in detail a completely degenerate extreme

relativistic electron gas, the energy of whose particles is large compared with

mc2
. In this case the relation between the energy and momentum of a particle

is

e = cp. (58.1)

The previous formulae (56.1) and (56.2) give the number of quantum states

and hence the limiting momentum po. The limiting energy (i.e. the chemical

potential of the gas) is now

£o = cp =
(— J he

(
— 1 . (58.2)

The total energy of the gas is

Po

h
2jW \

P ap ~ 8^3 ^

or

(6n2\W
„ /JV\ 1/3

*(r) -*<7) <58 -3>

The gas pressure can be obtained by differentiating the energy with respect

to the volume at constant entropy (equal to zero). This gives

E il&ty1* (NY*
(58.4)

t The suffix v or p to the specific heat is omitted, since Cv and Cp are the same in this

approximation. We have seen in §23 that, ifS tends to zero as T" when T -» 0, the difference

Cp - C, tends to zero as T2n+1, and so in this case Cp-Cv
~ T3

.
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The pressure of an extreme relativistic electron gas is proportional to the 4/3
power of the density.

It should be mentioned that the relation

PV = iE (58.5)

is actually valid for an extreme relativistic gas not only at absolute zero but
at all temperatures. This is easily seen by exactly the same method as that
used to derive the relation (55.8), with the energy given by e = cp instead of
s = p2/2m. With £ = cp, formula (52.4) leads to the following expression
for£:

Q= -2^3-{ £21°g(1+^" E)/r
) de

'

o

or, integrating by parts,

oo

gV C e3 deQ =
~*2lrwJ g(«-*)/r+ r

= ~iK (58 '6>

o

Thus the limiting value that the pressure of any macroscopic body can have
for a given E (see §27) is reached for an extreme relativistic Fermi gas.

Using the variable of integration z = e/T, we have

Q = - gVT* f z3 dz

J6n2c3h3
J

ez-fiT+ i

This shows that

Q = VT%m/T). (58.7)

Hence, as in §55, we find that in an adiabatic process the volume, pressure and
temperature of an extreme relativistic Fermi gas are related by

PK4/3 = constant, VT3 = constant, T*/P - constant. (58.8)

These are the same as the usual equation of the Poisson adiabatic with

y = 4/3 ; but it must be emphasised that y here is not the ratio of the specific

heats of the gas.

PROBLEMS
Problem 1. Determine the number of collisions with a wall in an extreme relativistic

completely degenerate electron gas.t

Solution. The calculation is as in §56, Problem; it must be remembered that the electron
velocity v s c. The result is v = $cN/ V.

Problem 2. Determine the specific heat of a degenerate extreme relativistic electron gas.

t In all the Problems we put g = 2.
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Solution. Applying the formula (57.1) to the integral in (58.6), we find

Hence the entropy

3(c/i) 3 ' * ~~ " 3ch

a2 G7r 2 ~) 2 ' 3 / V\ 113

and the specific heat

r - vi:
leftc^Ufr.

Problem 3. Determine the equation of state of a relativistic completely degenerate

electron gas (the electron energy and momentum being related by e 2 = c2
/?

2+m zci).

Solution. The previous formulae (56.1) and (56.2) give the number of states and the

limiting momentum p , and the total energy is

Po

E = ~^¥ JpW(.mW+p*) dp,

whence

E = -^i-{p (2/>o
2+w i!c2

) V(Po2+™2cJ)-(/nc)4 smh^ipjmc)).

The pressure P = -(dE/dV)s= is

P = j£p{po (y /»o*-w«c«) ViPl+m'^ + Oncfsmh-HPolmc)}.

These formulae are conveniently put in parametric form, using as parameter the quantity

1 = 4 sinh~ 1
(po/'"c). Then

N/V= (/nc/fl)
3 -(l/37i 2

) sinh3
if,

P = (irfc*/32jt*ii*Ki sinh f-y sinh #+l) 5

£/K= (m*cV32w*«»)(sinhf-f).

§59. A degenerate Bose gas

At low temperatures the properties of a Bose gas bear no resemblance to

those of a Fermi gas. This is evident from the fact that for a Bose gas the

state of lowest energy, occupied by the gas at T = 0, must be that with

E = (all the particles being in the quantum state e = 0), whereas a Fermi

gas has a non-zero energy at absolute zero.

If the temperature of the gas is lowered at constant density N/V, the

chemical potential (i given by equation (55.5) (with the lower sign) will

increase, i.e. its absolute magnitude will decrease (since [i is negative). It

reaches the value fi = at a temperature determined by the equation

n gipay* 12 Fvzfc
(59J)'1 (VzdzF

J
eZ_1

The integral in (59.1) can be expressed in terms of the zeta function; see the
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second footnote to §57. Denoting the required temperature by T , we obtain

„ 3.31 h* /JV\2/3

For T < To, equation (55.5) has no negative solutions, whereas in Bose sta-
tistics the chemical potential must be negative at all temperatures.

This apparent contradiction arises because under the conditions in ques-
tion it is not legitimate to go from the summation in formula (53.3) to the
integration in (55.5): in this process the first term in the sum (with ek

= 0) is

multiplied by y/e = and so disappears from the sum; but, as the tempera-
ture decreases, more and more particles must occupy that state of lowest
energy, until at T = they are all in it. The mathematical effect of this is

that, when the limit p - is taken in the sum (53.3), the sum of all the terms
in the series except the first tends to a finite limit given by the integral (55.5),
but the first term (with ek = 0) tends to infinity. Consequently, by letting /n

tend not to zero but to some small finite value, we can make this first term
in the sum take the desired finite value.

In reality, therefore, the situation for T < T is as follows. Particles with
energy e > are distributed according to formula (55.4) with [jl — 0:

The total number of particles with energies s > will thus be

at f^Ar gV(mT)W CVzdz

The remaining

NE=0 = N[l-(T/T yi2] (59.4)

particles are in the lowest state, i.e. have energy e = 0. f The energy of the gas
for T < To is, of course, determined only by the particles with e > 0; putting
jtt = in (55.7), we have

= gV(miyi*T ? z3/2 dz

2VWW
J

ez-\ '

This integral reduces to C(5/2) (see the second footnote to §57), and we obtain

E = OJ10NT(TJTo)*l2

= 0.128£(wJ/2r5/2/#J)K (59.5)

t The steady increase of particles in the state with e = is often called Bose-Einstein
condensation. It should be emphasised that this refers only to "condensation" in momentum
space; no condensation actually occurs in the gas, of course.
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The specific heat is therefore

Cv
= 5E/2T, (59.6)

i.e. is proportional to T312
. Integration of the specific heat gives the entropy:

S = 5E/3T, (59.7)

and the free energy is

F=E-TS= -\E. (59.8)

This is obvious, since for // =

F = 0-PV = Np+Q = Q.

The pressure is

P = -(dF/dV)T = 0.085 IgmZlzTyz/h*. (59.9)

We see that for T < T the pressure is proportional to T512 and is independent

of the volume. This is the natural consequence of the fact that particles in a

state with e = have no momentum and make no contribution to the press-

ure.

At the point T = To itself, all the above-mentioned thermodynamic quanti-

ties are continuous, but it may be shown that the derivative of the specific

heat with respect to temperature is discontinuous there (see the Problem).

The curve of the specific heat itself as a function of temperature has a change

in slope at T — T , and the specific heat has its maximum value there (equal

to 1.28X3JV/2).

PROBLEM

Determine the discontinuity of the derivative (dCv/dT) r at T = T .

Solution. To solve this problem we must determine the energy of the gas for small

positive T-T . The equation (55.5) is identical with

N - N (T)
W F\ l 1—1 V e de,

where iV„(r) is given by (59.1). Expanding the integrand and using the fact that fi is small

near the point T = T , and therefore the important part of the integral arises from the

region where e is small, we find that the integral is equal to

J \/e(«+l ("D
o

Substituting this value and then expressing fi in terms ofN-N , we have

~^ _
g*m3

{ TV )
'

To the same accuracy we can write

dE =
8/t

~ 2 8ft 2 " "*
2

dE 3 dQ 3 .. 3= -z-N at — Na
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whence

3 „ „ InWE=E + *-Nu-E 3n2h\ (
N»-NY

where E = E (T) denotes the energy for /n = 0, i.e. the function (59.5). The second deriva-
tive of the second term with respect to temperature will clearly give the required disconti-
nuity. The result of the calculation is

. (dCv \ 6nW r / 1 8AT \n

The value of the derivative (dCv/dT) v for T = T -0 is, from (59.5), +2.89 N/Tn and forT= r + it is therefore -0.77 N/T .

§60. Black-body radiation

The most important application of Bose statistics relates to electromagnetic
radiation which is in thermal equilibrium—called black-body radiation. Such
radiation may be regarded as a "gas" consisting of photons. The linearity

of the equations of electrodynamics expresses the fact that photons do
not interact with one another (the principle of superposition for the electro-

magnetic field), so that the "photon gas" is an ideal gas. Because the angular
momentum of the photons is integral, this gas obeys Bose statistics.

If the radiation is not in a vacuum but in a material medium, the condition
for an ideal photon gas requires also that the interaction between radiation
and matter should be small. This condition is satisfied in gases throughout
the radiation spectrum except for frequencies in the neighbourhood of absorp-
tion lines of the material, but at high densities of matter it may be violated
except at very high temperatures.

It should be remembered that at least a small amount of matter must be
present if thermal equilibrium is to be reached in the radiation, since the
interaction between the photons themselves may be regarded as completely
absent.* The mechanism by which equilibrium can be established consists in

the absorption and emission of photons by matter. This results in a very im-
portant specific property of the photon gas: the number of photons N in it

is variable, and not a given constant as in ordinary gas. Thus N itself must be
determined from the conditions of thermal equilibrium. From the condition
that the free energy of the gas should be a minimum (for given T and V), we
obtain as one of the necessary conditions dFjdN = 0. Since (dF/dN) T v = p,
this gives

A*
= 0, (60.1)

i.e. the chemical potential of the photon gas is zero.

t Apart from the entirely negligible interaction which is due to the possible production
of virtual electron-positron pairs.
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The distribution of photons among the various quantum states with ener-

gies ek
= hcok , where the cok are the eigenfrequencies of the radiation in a

given volume V, is therefore given by formula (53.2) with n = 0:

n~k = l/(eft»*/T_i). (60.2)

This is called Planck's distribution.

Assuming that the volume is sufficiently large, we can make the usual

changet from the discrete to the continuous distribution of eigenfrequencies

of the radiation. The number of modes of oscillation for which the compo-

nents of the wave vector f lie in the intervals dfx , dfy , d/2 is V dfx dfy dfj(2jif,

and the number of modes for which the absolute magnitude of the wave

vector lies in the range d/is correspondingly V-4nf2 d//(27r)3 . Using the fre-

quency co = cf and multiplying by 2 (for the two independent directions of

polarisation of the oscillations), we obtain the number of quantum states of

photons with frequencies between co and co+ dco:

Vco2 dcof7t
2c3 . (60.3)

Multiplying the distribution (60.2) by this quantity, we find the number of

photons in this frequency interval

:

V cor dco ssf. „>.

d<v = , (60.4)

and a further multiplication by hco gives the radiation energy in this segment

of the spectrum:

V*_ _a>s do>
(605)

This formula for the spectral energy distribution of black-body radiation is

called Planck"s formula (1900). In terms of the wavelength / = 2jrc/co, it

becomes
\6n2chV d). tarm

At low frequencies {hoy <$c T), formula (60.5) gives

d£„ = V(T/ti2c3)co2 dco. (60.7)

This is the Rayleigh-Jeans formula. It should be noticed that formula (60.7)

does not contain the quantum constant h, and can be derived by multiplying

by Tthe "number of modes" (60.3); in this sense it corresponds to classical

statistics, in which an energy 7" must correspond to each "vibrational degree

of freedom"— the law of equipartition (§44).

t See The Classical Theory of Fields, §52.
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In the opposite limiting case of high frequencies (fico » T), formula (60.5)

becomes

dEa = V(h/n2c3)coze-^l T dco. (60.8)
This is Wierfs formula.

Fig. 6 shows a graph of the function x3J(ex~ 1), corresponding to the distri-

bution (60.5).
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Fig. 6

The "density" of the spectral frequency distribution of the energy of black-

body radiation, dEJdco, has a maximum at a frequency com given by

hcoJT = 2.822. (60.9)

Thus, when the temperature rises, the position of the maximum of the distri-

bution is displaced towards higher frequencies in proportion to T (the

displacement law)?

Let us calculate the thermodynamic quantities for black-body radiation.

For
fj,
= 0, the free energy is the same as Q (since F = &—PV = Np+Q).

According to formula (53.4), in which we put (j, = and change in the usual

way (by means of (60.3)) from summation to integration, we obtain

—

f

n2cz
J

ft>
2 log (1

_<?-*»/
T) dco. (60.10)

With the new variable of integration x = ficojT, integration by parts gives

T4 Fx3 dx
F =

3?r2^3c3
C xz dx

t The wavelength distribution "density" dEJdk also has a maximum, but at a different

value of the corresponding ratio: 2nhcjTXm = 4.965. Thus the maximum Xm of the wave-

length distribution is displaced in inverse proportion to the temperature.
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The integral is equal to 7r
4/15 (see the second footnote to §57). Thus

F = _ F.jr2r4/45(/ic)3

= -4oVT*/3c. (60.11)

If T is measured in degrees, the coefficient a (called the Stefan-Boltzmann

constant) is

a = jr
2
A:
4/60#3c2

= 5.67X 10-5 g/sec3 deg*. (60. 12)

The entropy is

S = -dF/dT= l6aVT^3c, (60.13)

and is proportional to the cube of the temperature. The total radiation energy

E= F+TSis
E = 4oVT*/c = -3F. (60.14)

This expression could, of course, be derived also by direct integration of the

distribution (60.5). Thus the total energy of black-body radiation is propor-

tional to the fourth power of the temperature. This is Boltzmanri's law.

For the specific heat of the radiation Cv
= (dE/dT) v we have

Cv = 16oT3 V/c. (60.15)

Finally, the pressure is

P = -(dF/dV) 7
= 4oT*/3c, (60.16)

PV=iE. (60.17)

Thus for a photon gas the same limiting value of the pressure is obtained as

for an extreme relativistic electron gas (§58); this is as it should be, since the

relation (60.17) is a direct consequence of the linear relation (e = cp) between

the energy and momentum of a particle.

The total number of photons in black-body radiation is

V 7 co2 dco VT3 7 x2 dxN =
nz

c<

o o

The integral can be expressed in terms of C(3); see the second footnote to

§57. Thus

Ar =^©v = -M4®v- 60 - 18)

In an adiabatic expansion (or compression) of the photon gas, the volume
and temperature are related by VTZ = constant. From (60.16), the pressure

and volume are then related by PVm = constant. A comparison with (58.8)



166 The Fermi and Bose Distributions §60

shows that the equation of the adiabatic for a photon gas coincides (as we

should expect) with that for an extreme relativistic electron gas.

Let us consider a body in thermal equilibrium with black-body radiation

around it. The body continually reflects and absorbs photons incident on it,

and at the same time emits new ones, and in equilibrium all these processes

balance in such a way that the distribution of photons in frequency and direc-

tion remains unchanged on the average.

Owing to the complete isotropy of the black-body radiation, each volume

element emits a flux of energy uniformly in all directions. We use the notation

/ \
1 dEw hcoz fm Q.

eo(w) = Wto =
An*c\eW-\)

(60 ' 19)

for the "spectral density" of black-body radiation per unit volume and unit

solid angle. Then the energy flux density with frequencies in the interval dco

leaving each point and entering the solid angle element do is ce (co) do dco. The

radiation energy (with frequencies in dco) incident in unit time on unit area

of the surface of the body at an angle to the normal is therefore ce (co) X
cos do dco, do = 2jc sin dd.

Let A(co, 0) denote the "absorbing power" of the body as a function of the

frequency and direction of incidence of the radiation; this quantity is defined

as the fraction of the radiation energy incident on the surface of the body, in

the given frequency interval, which is absorbed by the body, not including the

radiation (if any) which passes through the body. Then the quantity of radia-

tion absorbed per unit time and surface area will be

ce (co)A(co, 0) cos do dco. (60.20)

Let us assume that the body does not scatter radiation and is not fluores-

cent, i.e. that the reflection occurs without change in the angle or in the

frequency. We shall also suppose that the radiation does not pass through

the body; in other words, all radiation not reflected is completely absorbed.

Then the quantity of radiation (60.20) must be balanced by the radiation

emitted by the body itself in the same directions at the same frequencies.

Denoting by J(co, 0) dco do the intensity of emission from unit area of the sur-

face and equating it to the absorbed energy, we obtain

J(co, 0) = ce (co)A(co, 0) cos 0. (60.21)

The functions J(co, 0) and A(co, 0) are, of course, different for different bodies,

but we see that their ratio is independent of the properties of the body and is

a universal function of frequency and direction

:

J(co, 6)/A(co, 0) = ce (co) cos 0,

which is determined by the energy distribution in the black-body radiation

spectrum (at a temperature equal to that of the body). This is Kirchhoff's law.
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If the body scatters radiation, Kirchhoff's law can be formulated only in

a more restricted way. Since in this case reflection occurs with a change in the

angle 6, we can derive from the condition of equilibrium only the requirement

that the radiation (of a given frequency) absorbed from all directions should

be equal to the total emission from the body in all directions:

J(co, 0) do = ce (co)
\
A(co, 0) cos do. (60.22)J(co, 0) do = ceo(co)

The angle also changes, in general, when radiation can pass through the

body (because of refraction on entering and leaving the body). In this case the

relation (60.22) must be integrated over the entire surface of the body; the

functions A(co, 0) and J{co, 0) now depend not only on the material of the body
but also on its shape and on the point considered on its surface.

Finally, when there is scattering with change of frequency (fluorescence),

Kirchhoff's law applies only to the integrals over both direction and fre-

quency of the radiation

:

j
j
J(co, 6)dodco = c f e (co)A(a>, 0) cos do dco. (60.23)

A body which completely absorbs all radiation incident on it is called a
black body* For such a body, A(co, 0) = 1 by definition, and its emissive

power is entirely determined by the function

Jo(co, 0) = ce (co) cos 0, (60.24)

which is the same for all black bodies. It may be noted that the intensity of
emission from a black body is a very simple function of direction, being pro-

portional to the cosine of the angle to the normal to the surface of the body.

The total intensity of emission from a black body, J , is obtained by integrat-

ing (60.24) over all frequencies and over a hemisphere

:

Jo = c

n/2

J
e (co) dco 2^ cos sin d0 = cE/4V,

where E is given by (60.14). Thus

Jo = aT*, (60.25)

t Such a body can be realised in the form of a cavity with highly absorbing internal
walls and a small aperture. Any ray entering through the aperture can return to it and leave
the cavity only after repeated reflection from the walls of the cavity. When the aperture is

sufficiently small, therefore, the cavity will absorb practically all the radiation incident on
the aperture, and so the surface of the aperture will be a black body.
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i.e. the total intensity of emission from a black body is proportional to the

fourth power of its temperature.

Finally, let us consider radiation not in thermal equilibrium, having a non-

equilibrium spectral or directional distribution. Let e(co, n) dco do be the volume

density of this radiation in the frequency interval dco and with the direc-

tion n of the wave vector lying in the solid-angle element do. We can use the

concept of the temperature of the radiation in each small interval of frequency

and direction, defined as the temperature for which the density e(co, n) is

equal to that given by Planck's formula, i.e. e(cot n) = e (co). Denoting this

temperature by T^ n , we have

T hm
( *.,.* 1 i

•

(60 26)f hm*_ 1
)

8
[
+

47i*c3
'

e(co,n)j

Let us imagine a black body emitting into a surrounding vacuum. The radi-

ation is propagated freely along straight lines and will not be in thermal equi-

librium outside the body; it is by no means isotropic, as equilibrium radia-

tion must be. Since the photons are propagated in a vacuum and do not inter-

act with one another, we are in a position to apply Liouville's theorem

rigorously to the photon distribution function in the corresponding phase

space of co-ordinates and wave-vector components. 1" According to this theo-

rem, the distribution function remains constant along the phase trajectories.

But the distribution function is, apart from a factor dependent on frequency,

the same as the volume density of radiation of a given frequency and direc-

tion, e(co, n, r). Since the radiation frequency is also constant during propaga-

tion, we have the following important result: in every solid-angle element

where radiation is propagated (from a given point in space) the radiation

density e(co, n, r) is equal to the density within the emitting black body, i.e.

to the black-body radiation density e (o>). Whereas, however, for equilibrium

radiation the density exists for all directions, here it exists only for a certain

interval of directions.

Defining the temperature of non-equilibrium radiation by (60.26), we can

express the result differently by saying that the temperature Tm> n is equal to

the temperature T of the emitting black body for all directions in which radia-

tion is being propagated (at any given point in space). If the radiation temper-

ature is defined from the density averaged over all directions, however, it is

of course less than the temperature of the black body.

All these consequences of Liouville's theorem remain fully valid when

reflecting mirrors and refracting lenses are present, provided, of course, that

the conditions for geometrical optics to be applicable are still satisfied. By

t When considering the limiting case of geometrical optics, we can speak of co-ordinates

of a photon.
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means of lenses or mirrors the radiation can be focused, i.e. the range of
directions from which rays reach a given point in space can be enlarged. This
may increase the mean radiation temperature at the point considered, but the
foregoing discussion shows that there is no means of raising it above the tem-
perature of the black body which emitted the radiation.



CHAPTER VI

THE CONDENSED STATE

§61. Solids at low temperatures

Solids form another suitable topic for the application of statistical methods

of calculating the thermodynamic quantities. A characteristic property of

solids is that the atoms in them execute only small vibrations about certain

equilibrium positions, the crystal lattice sites. The configuration of the lattice

sites which corresponds to thermal equilibrium of the body is preferred, i.e.

distinguished from all other possible distributions, and must therefore be

regular. In other words, a solid in thermal equilibrium must be crystalline.

As well as crystals, there exist in Nature also amorphous solids, in which

the atoms vibrate about randomly situated points. Such bodies are thermo-

dynamically metastable, and must ultimately become crystalline. In practice,

however, the relaxation times are so long that amorphous bodies behave as if

stable for an almost unlimited time. All the following calculations apply

equally to both crystalline and amorphous substances. The only difference is

that, since amorphous bodies are not in equilibrium, Nernst's theorem does

not apply to them, and as T -* their entropy tends to a non-zero value. Con-

sequently, for amorphous bodies the formula (61.7) derived below for the

entropy has to be augmented by some constant S (and the free energy by a

corresponding term —TSo); we shall omit this unimportant constant, which,

in particular, does not affect the specific heats ofa body.

The "residual" entropy, which does not vanish as T -* 0, may also be ob-

served in crystalline solids, because of what is called ordering of crystals. If

the number of crystal lattice sites at which atoms of a given kind can be situa-

ted is equal to the number of such atoms, there will be one atom near each

site; that is, the probability of finding an atom (of the kind in question) in the

neighbourhood of each site is equal to unity. Such crystals are said to be

completely ordered. There are also, however, crystals in which the atoms may

be not only at their "own" positions (i.e. those which they occupy in complete

ordering) but also at certain "other" positions. In that case the number of

sites that may be occupied by an atom of the given kind is greater than the

number of such atoms, and the probability of finding atoms of this kind at

either the old or the new sites will not be unity.

For example, solid carbon monoxide is a molecular crystal, in which the

170
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CO molecule can have two opposite orientations differing by interchange of

the two atoms; the number of sites that may be occupied by carbon (or oxy-

gen) atoms is here equal to twice the number of these atoms.

In a state of complete thermodynamic equilibrium at absolute zero, any

crystal must be completely ordered, and the atoms of each kind must occupy

entirely definite positions. However, because the processes of lattice rearran-

gement are slow, especially at low temperatures, a crystal which is incomplete-

ly ordered at a high temperature may in practice remain so even at very low

temperatures. This "freezing" of the disorder leads to the existence of a con-

stant residual term in the entropy of the crystal. For instance, in the example of

the CO crystal mentioned above, if the CO molecules have the two orienta-

tions with equal probability, the residual entropy will be S = log 2.

According to classical mechanics, all the atoms are at rest at absolute zero,

and the potential energy of their interaction must be a minimum in equilib-

rium. At sufficiently low temperatures, therefore, the atoms must always

execute only small vibrations, i.e. all bodies must be solid. In reality, however,

quantum effects may bring about exceptions to this rule. One such is liquid

helium, the only substance which remains liquid at absolute zero (at pressures

below 25 atmospheres); all other substances solidify well before quantum

effects become important.*

We may note that for a body to be solid its temperature must be sufficiently

low. The quantity T must certainly be small in comparison with the energy

of interaction of the atoms (in practice, all solids melt or decompose at higher

temperatures). From this it results that the vibrations of atoms in a solid

about their equilibrium positions are always small.

Let N be the number of molecules in the body, and v the number of atoms

in each molecule. Then the number of atoms is Nv. Of the total number of

degrees of freedom 3Nv, three correspond to translational and three to rota-

tional motion of the body as a whole. The number of vibrational degrees of

freedom is therefore 3Nv—6, but since 3Nv is extremely large we can, of

course, neglect 6 and assume that the number of vibrational degrees of free-

dom is just 3Nv.

It should be emphasised that in discussing solids we shall entirely ignore

the "internal" (electronic) degrees of freedom of the atoms. Hence, if these

degrees of freedom are important (as they may be, for example, in metals),

the following formulae will relate only to the "lattice" part of the thermo-

dynamic quantities for the solid, which is due to the vibrations of the atoms.

In order to obtain the total values of these quantities, the "electronic" part

(see §69) must be added to the "lattice" part.

t Quantum effects become important when the de Broglie wavelength corresponding to

the thermal motion of the atoms becomes comparable with the distances between atoms.
In liquid helium this occurs at 2-3°K.
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In mechanical terms, a system with 3Nv vibrational degrees of freedom may

be regarded as an assembly of 3Nv independent oscillators, each correspond-

ing to one normal mode of vibration. The thermodynamic quantities relat-

ing to one vibrational degree of freedom have already been calculated in

§49. From the formulae there we can immediately write down the free energy

of the solid as 1
"

F = Ne + TY, log (1 -e~ h^IT
). (61.1)

a

The summation is over all 3Nv normal vibrations, which are labelled by the

suffix a. We have added to the sum over vibrations a term Ne which repre-

sents the energy of interaction between all the atoms in the body in their

equilibrium positions (more precisely, when executing their "zero-point"

vibrations) ; this energy is obviously proportional to the number iV of molecules

in the body, so that e is the energy per molecule. It must be remembered

that £ is, in general, not constant, but a function of the density (or specific

volume) of the body: when the volume changes, so do the distances between

the atoms, and therefore the energy of their interaction. For a given volume,

however, e does not depend on the temperature: e = eq(V/N).

The remaining thermodynamic quantities can be derived in the usual way

from the free energy.

Let us now consider the limiting case of low temperatures. For small T,

only the terms with low frequencies (fta>a
~ T) are of importance in the sum

over a. But vibrations with low frequencies are just ordinary sound waves,

whose wavelength is related to the frequency by A ~ u/co, where u is the veloc-

ity of sound. In sound waves the wavelength is large in comparison with the

lattice constant (A » a), and so co <z u/a. In other words, if the vibrations can

be regarded as sound waves, the temperature must satisfy a condition which

may be written in the form
T^hu/a. (61.2)

Let us assume that the body is isotropic (an amorphous solid). In an iso-

tropic solid, longitudinal sound waves can be propagated (with velocity u
x ,

say), and so can transverse waves with two independent directions of polari-

sation and equal velocities of propagation (u
t
, say). The frequency of these

waves is linearly related to the absolute magnitude of the wave vector k by

co = uft or co = u
t
k.

The number of vibrational modes in the spectrum of sound waves with

absolute magnitude of the wave vector lying in the interval dk and with a

given polarisation is V-4nk2 dk/(27i)\ where V is the volume of the body.

Putting for one of the three independent polarisations k = co\u
x
and for the

t Quantised vibrations were first used by Einstein (1907) to calculate the thermo-

dynamic quantities for a solid.
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other two k = co/u
t
, we find that the interval dco contains altogether

vibrations.

A mean velocity of sound u can be defined according to the formula

A- A A
M3 U

t

3 Wj3
'

Then the expression (61.3) becomes

F-3co2 dco/2jr2u3 . (61.4)

In this form it is applicable not only to isotropic bodies but also to crystals,

where u = u(V/N) must be understood as the velocity of propagation of sound

in the crystal, averaged in a certain way. The determination of the averaging

procedure requires the solution of the problem (which belongs to the theory

of elasticity) of the propagation of sound in a crystal of given symmetry.

By means of (61.4) we can change from the summation in (61.1) to integra-

tion, obtaining

F = JVe +rAL. f log(l- e-'WX)£U2 dw; (6L5)

o

because of the rapid convergence of the integral when T is small, the integra-

tion can be taken from to ». This expression (apart from the term Ne )

differs from the formula (60.10) for the free energy of black-body radiation

only in that the velocity of light c is replaced by the velocity of sound u and

a factor 3/2 appears. This resemblance is not surprising, since the frequency

of sound vibrations is related to their wave number by the same type of linear

formula as is valid for photons. The integers va in the energy levels JX#fc>a of

a system of sound oscillators may be regarded as "occupation numbers" of

the various "quantum states" with energies sa = hooa , the values of these

numbers being arbitrary (as in Bose statistics). The appearance of the extra

factor 3/2 in (61.5) is due to the fact that sound vibrations have three possible

directions of polarisation instead of two as for photons.

Thus, without having to repeat the calculations, we can use the expression

(60.11) derived in §60 for the free energy of black-body radiation, if c is re-

placed by u and a factor 3/2 included. The free energy of a solid is therefore

F = NeQ - F-Ji2r4/30(&7)3 ; (61.6)

the entropy is

S = V'2n*T*/\5(MY, (61.7)

the energy

E = Ne + V-n2T*J10(M)\ (61.8)

and the specific heat

C = 27r2r3 F/5(/m)3
. (61.9)
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Thus the specific heat of a solid at low temperatures is proportional to the

cube of the temperature* (Debye 1912). We write the specific heat as C
simply (not distinguishing C„ and C

p),
since at low temperatures the differ-

ence C
p
—Cv is a quantity of a higher order of smallness than the specific heat

itself (see§ 23; here S ~ T3 and so C
p
-Cv

~ T7
).

For solids having a simple crystal lattice (elements and simple compounds)

the Tz law for the specific heat does in fact begin to hold at temperatures of

the order of tens of degrees, but for bodies with a complex lattice this law

may be expected to be satisfactorily obeyed only at much lower temperatures.

§62. Solids at high temperatures

Let us now turn to the opposite limiting case of high temperatures (of

order T^> huja, where a is the lattice constant). In this case we can put

1 _ e-fi»>J
T =* hcoJT, and formula (61 .1) becomes

F = Neo+T^ log (hcoJT). (62.1)
a

The sum over a contains altogether 3Nv terms. We define the "geometric

mean" frequency io by

logcu =— £logcoa . (62.2)

a

Then the free energy of the solid is given by

F = Ne - 3NvT log T+ 3NvT log ha>. (62.3)

The mean frequency ca, like u, is a function of the density, co(V/N).

From (62.3) we find the energy of the body, E = F-TdF/dT:

E = Ne +3NvT. (62.4)

The case of high temperatures corresponds to the classical treatment of the

vibrations of the atoms; it is therefore clear why formula (62.4) accords

exactly with the law of equipartition (§44): apart from the constant Ne , an

energy T corresponds to each of the 3Nv vibrational degrees of freedom.

For the specific heat we have

C = Nc = 3Nv, (62.5)

where c = 3v is the specific heat per molecule. We again write the specific

heat as C simply, since in solids the difference between Cp
and Cv is always

negligible (see the end of §64).

t It may be recalled that when "electronic degrees of freedom" are present these for-

mulae give only the "lattice" part of the thermodynamic quantities. However, even when

there is an "electronic part" (as in metals) it begins to affect the specific heat, for example,

only at temperatures of a few degrees.
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Thus at sufficiently high temperatures the specific heat of a solid is constant

and depends only on the number of atoms in the body. In particular, the

specific heat per atom (v = 1) must be the same for different elements and

equal to 3 (in ordinary units, 3k); this is Dulong and Petit''s law. At ordinary

temperatures this law is well satisfied for many elements. Formula (62.5) is

valid at high temperatures for a number of simple compounds also, but for

more complex compounds it gives a limiting value of the specific heat which

in general is not reached before the substance melts or decomposes.

Substituting (62.5) in (62.3) and (62.4), we can write the free energy and

energy of a solid as

F = Neo-NcT log T+NcT log fico, (62.6)

E = Neo+NcT. (62.7)

The entropy S - - dF/dT is

S = Nc log T- Nc log (fico/e). (62. 8)

Formula (62.1) can also, of course, be derived directly from classical statis-

tics, using the general formula (31.5)

F = - T log f e-£(P' «)/ T dr. (62.9)

For a solid, the integration over the co-ordinates in this integral is carried out

as follows. Each atom is regarded as being situated near a particular lattice

site, and the integration over its co-ordinates is taken only over a small

neighbourhood of that site. It is clear that all the points in the region of

integration thus defined will correspond to physically different microstates,

and no additional factor is needed in the integral.
1.

We substitute in (62.9) the energy expressed in terms of the co-ordinates

and momenta of the normal modes

:

^,*) = iI(P.a+®.V), (62.10)

and write dT in the form

Then the integral becomes a product of 2>Nv integrals, all of the form

•o oo

exp{-(^2 +0>a
2O/2r}d/>a d<7a = 2nTM

leading to formula (62.1); because of the rapid convergence of the integral,

the integration over qx may be extended from — °° to °°.

t Whereas it was for a gas, where the integration over the co-ordinates of each particle

was taken over the whole volume (cf. the end of §31).
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At sufficiently high temperatures (provided that the solid does not melt or

decompose) the effects of anharmonic vibrations of the atoms may become

appreciable. The nature of these effects as regards the thermodynamic quanti-

ties for the body may be investigated as follows; cf. the similar calculations

for gases in §49. Taking into account the terms following the quadratic terms

in the expansion of the potential energy of the vibrations in powers of qa,

we have

E(p, q) = Mp, q)+Mq)+f,(q)+ . . .,

where fz(p, q) denotes the harmonic expression (62.10) (a quadratic form in

#a and/?a), and/3(<7), /4(#), . . . are forms homogeneous in all the co-ordinates

qa , of degree three, four, etc. Substituting in the partition function in (62.9)

L = q*'/VT,pa
= pS/VT, we obtain

f
e-E(p,q)IT (jr

= 7**' f exp { -ftp', q') - y/TMq') -W) - • • • } d/\

We see that, when the integrand is expanded in powers of the temperature, all

odd powers of -y/T are multiplied by odd functions of the co-ordinates, which

give zero on integration over the co-ordinates. Hence Z is a series Z = Z +
TZ1+T2Z2+ . . . which contains only integral powers of the temperature.

On substitution in (62.9), the first correction term to the free energy will

accordingly be of the form

Fmh = AT*. (62.11)

i.e. proportional to the square of the temperature. In the specific heat it gives

a correction
1,

proportional to the temperature itself. It should be emphasised

that the expansion under discussion here is essentially one in powers of the

ratio T/e , which is always small, and not, of course, in powers of the ratio

Tjhio, which in the present case is large.

PROBLEMS

Problem 1. Determine the maximum work which can be obtained from two identical

solid bodies at temperatures 7\ and T2 when their temperatures are made equal.

SoLUTiON.The solution is entirely similar to that in §43, Problem 12, and gives

\R\^ = NcWTt -VT2Y.

Problem 2. Determine the maximum work which can be obtained from a solid when it

is cooled from a temperature T to the temperature T of the medium (at constant volume).

Solution. From formula (20.3) we have

I
R

I max = Nc(T-T )+NcT log (T /T).

t This correction is usually negative (corresponding to positive A in (62.11)).
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§63. Debye's interpolation formula

Thus in both the limiting cases of low and high temperatures it is possible

to make a sufficiently complete calculation of the thermodynamic quantities

for a solid. In the intermediate temperature range, such a calculation is

impossible, since the sum over frequencies in (61.1) depends considerably on

the actual frequency distribution over the whole spectrum of vibrations of

the body concerned.

It is therefore of interest to construct a single interpolation formula giving

the correct values of the thermodynamic quantities in the two limiting cases.

More than one such formula can be found, of course, but we should expect

that a reasonable interpolation formula will give at least a qualitatively cor-

rect description of the behaviour of the body throughout the intermediate

range.

The form of the thermodynamic quantities for a solid at low temperatures

is given by the distribution (61.4) of the frequencies in the vibration spectrum.

At high temperatures it is important that all the 3Nv vibrations are excited.

To construct the required interpolation formula, therefore, it is reasonable to

start from a model in which the law (61.4) (which in reality is valid only at

low frequencies) governs the frequency distribution over the whole vibration

spectrum, the spectrum beginning at co — and terminating at some finite

frequency com determined by the condition that the total number of vibra-

tions is equal to the correct value 3Nv:

3V C Vco 3
1

co2 dco = -^T = 37Vr,
3V r

2ji2u3
\2ji*uz
J

2ti2w3

whence

Qim = u(67i2Nv/Vyi*. (63.1)

Thus the frequency distribution in this model is given by the formula

9Nva>* dco/o)ms (co^com) (63.2)

for the number of vibrations with frequencies in the interval dco (here u has

been expressed in terms of com).

Changing from the sum in (61.1) to an integral, we now have

9Nv rF = Ns + T 3 co2 1og(l-e-^ r)do).
" % J

o

co r

The Debye temperature or characteristic temperature & of the body is defined

by

= fuom (63.3)
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(and is, of course, dependent on the density of the body). Then

F=Ne + 9NvT{TI8f f z2 log (1 - <?-*) dz.

o

Integrating by parts and using the Debye function

-if
z3 dz

ez-l '

we can rewrite this formula as

F = JVe +M>r[3 log (1 -e- &l T)-D(GjT)].

Hence the energy £ = F-TdF/dTis

E = Ne + 3NvTD(&/T)

and the specific heat is

C = 3Nv{D(0/T)-(0/T)D'(e/T)}.

Fig. 7 shows a graph of C/3iV*> as a function of 7/(9.

10

08
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©

Fig. 7

Formulae (63.6)-(63.8) are the required interpolation formulae for the

thermodynamic quantities for a solid (Debye 1912).

It is easy to see that in both limiting cases these formulae in fact give the

correct results. For T <sz B (low temperatures) the argument 0/Tof the Debye
function is large. In a first approximation we can replace jc by «> in the upper

limit of the integral in the definition (63.5) of D(x); the resulting definite inte-

gral is 7T
4
/ 15, and so1

D(x) =* 7r
4/5x3 (x ^> 1).

fa o-

t Replacing by — I , expanding (e
z — 1)

_I in the second integrand in powers of
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Substituting this in (63.8), we obtain

C = (12iVwrV5)(r/0)3,
(63.9)

which is the same as (61.9). At high temperatures (T» 0) the argument of

the Debye function is small; for jc «: 1 we have D(x) s ltoa first approxi-

mation^ and (63.8) gives C = 3Nv, again in full agreement with the previous

result (62.5). t

It is useful to point out that the actual form of the function D(x) is such

that the criterion of applicability of the limiting expressions for the specific

heat is the relative magnitude of T and \ : the specific heat may be regarded

as constant for T» ± and proportional to T3 for T« -j- 0. "

According to Debye's formula, the specific heat is some universal function

of the ratio 0/T. In other words, according to this formula, the specific heats

of bodies must be the same if the bodies are in corresponding states, i.e. have

the same value of 0/T.

Debye's formula gives a good description of the variation of specific heat

with temperature (as far as can be expected from an interpolation formula)

only for certain substances with simple crystal lattices : most of the elements,

and some simple compounds such as the halides. It is inapplicable in practice

to substances of more complex structure ; this is quite reasonable, since in

such substances the vibration spectrum is extremely complicated.

In particular, Debye's formula is totally inapplicable to highly anisotropic

crystals. Such crystals may have a "layer" or "chain" structure, and the poten-

tial energy of interaction of the atoms within each "layer" or "chain" is then

considerably greater than the binding energy between different layers or

chains. Accordingly the vibrational spectrum will be described by not one

but several characteristic temperatures, of different orders of magnitude. The

T3 law for the specific heat will be valid only at temperatures which are small

compared with the smallest of the characteristic temperatures; in the inter-

mediate ranges, new limiting laws apply.
+

e~ z
, and integrating term by term, we find that, for x » 1,

D(x) = ^-3e-'{l + 0(llx)}.

The value given in the text is therefore correct to within exponentially small terms.

t For x«la direct expansion of the integrand in powers of x and integration term by
term gives

Wrt-i-f'+H*— •

t The specific heat at high temperatures accurate to the next term in the expansion is

C=3iVv{l- ~(&ITy}

II As examples, the values of © for a number of substances, derived from their specific-

heat values, are Pb 90°, Ag 210°, Al 400°, KBr 180°, NaCl 280°. For diamond, & is partic-

ularly large, ~ 2000°
+ See I. M. Lifshttz, Zhurnal eksperimentaVnoi i teoreticheskoifiziki 22, 471, 1952.
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§64. Thermal expansion of solids

The term proportional to T* in the free energy at low temperatures (61.6)
can be regarded as a small correction to F = Ne (V/N). The small correction
to the free energy (for given V and T) is equal to the small correction to the
thermodynamic potential (for given P and T; see (15.12)). We can therefore
write immediately

= #o(P)-7r2r4F (P)/30(/tti)3 . (64.1)

Here O(P) is the temperature-independent part of the thermodynamic poten-
tial, V (P) the volume expressed as a function of pressure by means of the
relations P = -dF JdV = -N deo/dV, and u = u(P) is the mean velocity of
sound, expressed in terms of the pressure by means of the same relations. The
dependence of the volume of the body on the temperature is given by
V = d&/dP:

"-w-mM*)- (64 -2)

The thermal expansion coefficient a = (1 / V)(d V/dT)p h

2tz*T* d (Vo\

Ts#ndp[w) m (64 - 3)a = —

We see that at low temperatures a is proportional to the cube of the tempera-
ture. This result is already obvious from Nernst's theorem (§23) together

with the T3 law for the specific heat.

Similarly, at high temperatures we can consider the second and third terms
in (62.6) as small corrections to the first term (we must always have T<sc e

if the body is solid), and obtain

= O(P) -NcT log T+NcT log hco(P), (64.4)

whence

V= V (P)+ (NcT/aJ)da>/dP. (64.5)

The thermal expansion coefficient is

a = (Nc/Voco) dco/dP, (64.6)

and is independent of the temperature.

When the pressure increases, the atoms in a solid come closer together,

and the amplitude of their vibrations (for a given energy) decreases, i.e. the

frequency increases. Thus dco/dP > 0, so that a > 0, and solids expand when
the temperature rises. Similar considerations show that the coefficient a given

by formula (64.3) is also positive.

Finally, we can make use of the law of corresponding states given at the

end of §63. The statement that the specific heat is a function only of the ratio

TjO is equivalent to saying that the thermodynamic potential, for example, is
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of the form
= ®JP)+Of(TIO). (64.7)

The volume is

V= Vo(P)+(d0/dP)[f-(T/0)n

and the thermal expansion coefficient is

«= -(T/V<0*)(d6/dP)f".

Similarly, we find the heat function W = 0-TdOJdT and the specific heat

C = QW/dT:
C= -(77<9)/".

Taking the ratio of the two expressions for a and C, we obtain

<* 1 d0 ,,. .

c " ©F^dF (648)

Thus, within the limits of validity of the law of corresponding states, the ratio

of the thermal expansion coefficient to the specific heat of a solid is independ-

ent oftemperature (GriineiserCs law).

It has already been mentioned that in solids the difference between the specif-

ic heats Cp and Cv is very slight. At low temperatures this is a general conse-

quence of Nernst's theorem, which applies to all bodies. At high temperatures

we have, using the thermodynamic relation (16.9),

c -c T K
9F/9r)p]2 - T

«2vo
2

'» ^v @V/dP)T dVo/dP'

where a = a(P) is the thermal expansion coefficient (64.6). We see that the

difference Cp—Cv is proportional to T; essentially this means that its expan-

sion in powers of T/e begins with a first-order term, whereas that of the specif-

ic heat itself begins with a zero-order (constant) term. Hence it follows that

in solids Cp— Cv
<sc C at high temperatures also.

§65. Phonons

In the foregoing sections we have treated the thermal motion of the atoms

in a solid as a set of small normal vibrations of the crystal lattice. Let us now
examine the properties of these vibrations in more detail.

Each unit cell of the crystal generally contains several atoms. Thus each

atom can be specified by stating which unit cell contains it and giving the

number of the atom in that cell. The position of the unit cell can be defined by

the radius vector rg of any particular vertex of the cell; r
8
takes values given by

r8 = 5iai+j2a2+53a3, (65.1)

where sly s%, j3 are integers, and ai, a2, a3 are the basic lattice vectors (i.e. the

lengths of the sides of the unit cell).
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Let the displacements of the atoms in the vibrations be denoted by u 8
,

where the index s gives the number of the cell and the suffix n gives both the
number of the atom in the cell and the co-ordinate axis (x, y, z) along which
the displacement is considered; n therefore takes altogether 3r values, where
r is the number ofatoms in the cell.

The vibrations occur under the influence of the forces exerted on each atom
by the remaining atoms in the lattice. These forces are functions of the displa-
cements, and since the latter are small the forces may be expanded in powers
of the un

B
, retaining only the linear terms. This expansion does not contain

zero-order terms, since for un*= all the atoms are in equilibrium and the
forces acting on them must vanish. Thus the equations ofmotion of the atoms
in the lattice are of the form

"n
8 = - £ Kn>*'-*un,*'.

(65.2)

The constant coefficients X depend only on the differences s'-s, since the
interaction forces between atoms can clearly depend only on the relative posi-
tion of the lattice cells, not on their absolute position in spaced
We shall seek solutions of equations (65.2) in the form of a "monochro-

matic plane wave"

un * = un exp [/(kT,-fl>*)]. (65.3)

The (complex) amplitude un depends only on the suffix n, i.e. is different for
different atoms in the same cell but not for equivalent atoms in different

cells.

Substitution of (65.3) in (65.2) gives

n', s'

Dividing both sides of this equation by eik#rs, defining the vector r^ = r ,-r
with suffix a = s'-s and changing from summation over s' to summation
over o, we have

£ Kn>aei*"vuni-(Qiun = 0. (65.4)
n', o

This set of linear homogeneous equations for the amplitudes has non-zero
solutions only if the determinant is equal to zero

:

II Kn>ae*'*v-co2dnn ,
|

= 0. (65.5)
or

Since the suffixes «, n' each take 3r values, the order of the determinant is

3r, so that (65.5) is an algebraic equation in co2 of degree 3r.

t The coefficients A are connected by certain relations which express the fact that a simple
displacement or rotation of the lattice as a whole causes no forces to act on the atoms. We
shall not pause to write out these relations here.
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Each of the 3r solutions of this equation determines the frequency co as a

function of the wave vector k, usually called the dispersion relation. Thus for

any given value of the wave vector the frequency can in general take 3r differ-

ent values. In other words, we can say that the frequency is a many-valued

function of the wave vector, with 3r branches: co = con(k), where the suffix n

labels the values of the frequency for a given k. Geometrically, the functional

relation co = co(kx, kyi k^ is represented by a four-dimensional hypersurface.

The different branches of the function correspond to different sheets of this

hypersurface.

The hypersurface co = co{kx> ky , k^ may intersect itself, i.e. its sheets need

not be completely separate. Such intersections may occur both for "acciden-

tal" values of kand for values which are distinguished by the symmetry of their

position with respect to the reciprocal lattice.

In the former case the intersections can occur only in a manifold of one

(not two) dimensions, i.e. in a line.f The existence of such intersections could

be theoretically predicted only by actually solving the equations of motion of

the atoms in a particular lattice.

Intersections resulting from the symmetry of the crystal can be treated by

the methods of group theory. We shall not pause to discuss this question here,

but simply mention that in this case various types of intersection are possible,

not only oftwo but ofmore than two hypersurfaces.*

Among these 3r branches there must be some which for wavelengths large

compared with the distances between atoms correspond to ordinary elastic

(i.e. sound) waves in the crystal. It is known from the theory of elasticity that

waves of three types can be propagated in a crystal regarded as a continuous

medium; these types differ as regards the dependence of co on k, but for al!

three types co is a homogeneous function of the first order in the components

of the vector k, and vanishes when k = 0. Thus the 3r branches of the func-

tions co(k) must include three for which the frequency vanishes with k, and

for small k is a homogeneous function of the first order in the components of

k, i.e. is ofthe form
co = <x(n)k, (65.6)

where a(n) is some function of the direction of the vector k (n being a unit

vector in the direction of k). These three types of wave are called elastic or

acoustic; they are characterised by the fact that the lattice vibrates as a whole,

as a continuous medium. In the limiting case of infinite wavelength, these

vibrations become a simple parallel displacement ofthe entire lattice.

t Cf. Quantum Mechanics, §79.

t See L. P. Bouckaert, R. Smoluchowski and E. Wigner, Physical Review 50, 58,

1936; F. Hund, Zeitschrift fur Physik 99, 119, 1936; C. Herring, Physical Review 52,

361, 365, 1937.
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In the remaining 3(r— 1) types of wave the frequency does not vanish when
k = 0, but tends to a constant limit as k -*- 0. These are called optical vibra-

tions of the lattice. In this case the atoms in a given cell are in relative motion,

and in the limit k = the centre of mass of the cell remains fixed. It is evi-

dent that if each cell contains only one atom there can be no optical vibra-

tions.

We may note that the 3r — 3 limiting frequencies (for k = 0) of the optical

vibrations need not all be different from one another. When the crystal has

certain symmetry properties, the limiting frequencies of some of the branches

of the optical vibrations may coincide (i.e. the self-intersections of the hyper-

surface Q) = co(k) may pass through the point k = 0). If the limiting frequency

for one of the optical branches does not coincide with that for another branch,

then the frequency co(k) for that branch can be expanded (near k = 0) in

powers of the components k
i
of the vector k. It is easy to see that this expan-

sion can contain only even powers of the k
{

. For, by the symmetry of the me-

chanical equations of motion under time reversal, if the propagation of a wave

(65.3) is possible, then so is that of a similar wave in the opposite direction.

But such a change of direction is equivalent to a change in the sign of k.

Accordingly, the functions co(k) must be even: co( — k) = co(k), and this

proves the above statement. Thus in the present case the dependence of the fre-

quency of optical vibrations on the wave vector near k = has the form

CO = O) + £ «tftfcifcft, (65 - 7)

i, k=x, y, z

where a> is the limiting frequency and the <x
ik are certain constants.

If, however, the limiting frequencies of several branches coincide, the fre-

quencies co(k) for these branches can not in general be expanded in powers of k,

since the point k = is a singular one (branch point) for them, and near such

a point a function cannot be expanded in series. We can say only that, near

k = 0, the difference co—coo will be a homogeneous function of the fc
t
of

either the first or the second order (depending on the symmetry of the crystal).

The wave vector k of the lattice vibrations has the following important

property. The vector k appears in the expression (65.3) only through the expo-

nential factor e
ik ' rs. But this factor is unchanged when k is augmented by

any vector of the form 2rcb, b = />ibi+J
p2b2+/>3b3, where b is any vector of

the reciprocal lattice (see §135), bi, b2, b3 are the basic vectors of the reciprocal

lattice, andpi, P2, Pz are integers. This means that the wave vector of the lat-

tice vibrations is defined only to within an arbitrary vector of the reciprocal

lattice, multiplied by lit.

Thus in each branch of the function co(k) it is sufficient to consider values of

the wave vector which lie in some particular finite interval: if the co-ordinate

axes (in general oblique) are taken along the three basic vectors of the
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reciprocal lattice, it is sufficient to consider values of the three components

of the wave vector in the intervals

—nbx «s kx «s nb Xi —nb2 =*s kv
=s nb2 , —nbz =s kz =s 7tb3 . (65.8)

In other words, for the vector k/2n we must take all its possible values lying

in one reciprocal lattice cell. This applies, of course, to both acoustic and
optical vibrations.

Concerning the whole of the foregoing discussion, it must be emphasised
once more that this has related only to the "harmonic approximation",

in which only those terms are taken into account, in the potential energy of
the vibrating particles, which are quadratic in the displacements of the atoms.

It is only in this approximation that the various monochromatic waves (65.3)

do not "interact" but are freely propagated through the lattice. When the

subsequent "anharmonic" terms are taken into account, various processes

of scattering of these waves by one another appear.

Moreover, it is assumed that the lattice is perfectly periodic, but it must be
borne in mind that the perfect periodicity is to some extent perturbed, even
without allowing for possible impurities and other lattice defects, if the crystal

contains randomly distributed atoms of different isotopes. This perturbation,

however, is comparatively small if the relative difference of atomic weights of
the isotopes is small or if the abundance of one isotope greatly exceeds those
of the others. In such cases, which are those usually encountered, the above
description remains valid in a first approximation, and in subsequent approxi-
mations there occur various processes of "scattering" of waves by "inhomo-
geneities" in the lattice.

Let us now consider the quantum treatment of lattice vibrations.

Instead of the waves (65.3), in which the atoms have definite displacements
at any instant, quantum theory uses the concept of sound quanta or phonons,
which are "quasi-particles" propagated through the lattice, with definite

energies and directions of motion. Since the energy of an oscillator in quantum
mechanics is an integral multiple of noo (where co is the frequency of the clas-

sical wave), the phonon energy e is related to the frequency co by

e = fico, (65.9)

in the same way as for light quanta or photons. The wave vector k determines
the quasi-momentum p of the phonon

:

P = h*. (65.10)

This is a quantity in many ways analogous to the ordinary momentum, but
there is an important difference between them due to the fact that the quasi-
momentum is defined only to within an arbitrary additive constant vector of
the form 2nhh; values of p differing by such a quantity are physically equiva-
lent.
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The velocity of a phonon is given by the group velocity of the corresponding

classical waves, v = da>jdk. This formula may also be written

v = 0e(p)/Sp, (65.11)

which is exactly analogous to the usual relation between the energy, momen-
tum and velocity of particles.

The whole of the discussion above concerning the relation between the

frequency and the wave vector for waves is entirely applicable to the relation

between the energy and the quasi-momentum for phonons. In particular, the

function e = e(p) in general has 3r different branches. These include three

"kinds" of phonons for which, at sufficiently small values of the quasi-

momentum, the energy e is a homogeneous function of the first order in the

components of p. The velocity of such phonons for small p has a value which

depends only on the direction of p and not on its magnitude. This velocity

is clearly just the corresponding velocity of sound in the crystal.

The free propagation of the waves (65.3) in the "harmonic" approximation

corresponds, in the quantum description, to the free motion of phonons

which do not interact at all, i.e. do not "collide" with one another. In sub-

sequent approximations, various processes of elastic and inelastic collisions

between phonons appear. These collisions provide the mechanism whereby

thermal equilibrium is established in the "phonon gas", i.e. whereby an equi-

librium thermal motion is established in the lattice.

In the collision of two (or more) phonons, the laws of conservation of

energy and of quasi-momentum must be obeyed. The latter law, however,

requires the conservation of the sum of the quasi-momenta of the colliding

phonons only to within an arbitrary additive vector of the form 2jitib, as a

result of the non-uniqueness of the quasi-momentum itself. Thus the quasi-

momenta of the two phonons before the collision (px, p2) and after the

collision (p/, p2
') must be related by

P1+P2 = pi'+p2'+27r#b. (65.12)

Any number of identical phonons may be created simultaneously in the

lattice. That is, any number of phonons may be in each of the phonon quan-

tum states. This means that the phonon gas obeys Bose statistics. Since,

furthermore, the total number of "particles" in this gas is not given and is

itself determined by the equilibrium conditions, its chemical potential is zero

(see §60). The mean number of phonons in a given quantum state (with quasi-

momentum p and energy e) is determined in thermal equilibrium by Planck's

function:

^= l/(^(p)/r_i). (65.13)

It may be noted that at high temperatures (T?> e) this expression becomes

~n~v = T/e, (65.14)
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i.e. the number of phonons in a given state is proportional to the tempera-

ture.

The concept of phonons can be used to describe the non-equilibrium states

of a solid in the same way as for an ideal gas. Any non-equilibrium macro-

scopic state of a solid is denned by some non-equilibrium distribution of pho-

nons among their quantum states. The entropy of a body in such a state can

be calculated by means of the formulae derived in §54 (for a Bose gas). In

particular, when there are many phonons in each state, the entropy is

S = ZGj
\og(eN

j
/G

j),

j

where Nj is the number of phonons in a group of Gj neighbouring states (see

(54.8)). This case corresponds to high temperatures (T» 0).

We can rewrite this formula in an integral form corresponding to the

classical wave picture of thermal vibrations. The number of phonon states

(of each of 3r "kinds") which "correspond" to the interval dkx dk dk
t of

values of the wave vector and the space volume element dV is

= dpx dpv dpz dV _ dkx dky dkz dV

Let U(r, k) dr be the energy of thermal vibrations with wave vectors in

dkx dky dkz in the space volume dV. The corresponding number of phonons
is U(t, k) dt/hco(k). Substituting these expressions for G,- and AT.and changing
to integration, we have the following formula for the entropy of a solid with
a given non-equilibrium distribution of energy in the spectrum of thermal
vibrations:

S = £ f log [eU{rt k)/fc»(k)] dr. (65.15)

The summation is over the 3r branches of the function <o(k).

§66. Quantum liquids with Bose-type spectrum

Unlike gases and solids, liquids do not allow a calculation in a general
form of the thermodynamic quantities or even of their dependence on tem-
perature. The reason lies in the existence of a strong interaction between the
molecules of the liquid while at the same time we do not have the smallness
of the vibrations which makes the thermal motion in solids especially simple.

The strength of the interaction between molecules makes it necessary to
know the precise law of interaction in order to calculate the thermodynamic
quantities, and this law is different for different liquids.

A general theoretical treatment is, however, possible for liquids at tem-
peratures near absolute zero.* This problem is of considerable fundamental

t The results given in §§66-68 are due to L. Landau.
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interest, although in practice there is in Nature only one substance, namely

helium, which can remain liquid down to absolute zero. In this connection

it will be recalled (see §61) that according to classical mechanics all bodies

should be solid at absolute zero, but helium, owing to the unusually weak

interaction between its atoms, remains liquid down to temperatures at which

quantum effects become important (a quantum liquid), after which it need not

solidify.

The calculation of the thermodynamic quantities requires a knowledge of

the energy level spectrum of the body in question. It should be emphasised

that, for a system of strongly interacting particles such as a quantum liquid,

we can speak only of levels corresponding to stationary quantum states of

the whole liquid, and never to states of the individual atoms. In calculating

the partition function at temperatures close to absolute zero, only the energy

levels of low excitation in the liquid need be taken into account, i.e. the levels

which lie not too far above the ground state.

The following point is fundamental to the whole of the subsequent dis-

cussion. Any low excited state of a macroscopic body can be regarded in

quantum mechanics as an assembly of elementary excitations, which behave

as quasi-particles moving in the volume occupied by the body and having

definite energies and momenta. So long as the number of elementary excita-

tions is sufficiently small, they do not "interact" with one another (i.e. their

energies are additive), and so the assembly of them may be regarded as an

ideal gas. It should again be emphasised that the concept of elementary

excitations arises as a means of quantum description of the collective motion

of the atoms in a liquid, and they cannot in any way be identified with the

individual atoms or molecules.

An example of quasi-particles is given by the phonons discussed in §65,

which describe states of a crystal whose atoms are executing small vibrations

about equilibrium positions.

One possible type of energy spectrum of low excited states of a quantum

liquid (a "Bose-type" spectrum) is characterised by the fact that the ele-

mentary excitations may appear and disappear singly. But the angular mo-

mentum of any quantum system (here the whole liquid) can change only by

an integer. Thus the elementary excitations appearing singly must have inte-

gral angular momentum and therefore obey Bose statistics. Any liquid con-

sisting of atoms which obey Bose statistics must have a spectrum of this

type.

A very important property of quasi-particles is their dispersion relation,

i.e. the relation between their energy and momentum. In a spectrum of the

type under consideration, the elementary excitations with small momenta p

(i.e. large wavelengths h/p) correspond to ordinary sound waves in the liquid,

i.e. are phonons. This means that the energy of such elementary excitations
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is a linear function of the momentum

:

e = up, (66.1)

where u is the velocity of sound in the liquid. It must be emphasised that the

momentum of an elementary excitation in the liquid is the true momentum,

and not the quasi-momentum as for a phonon in the periodic crystal lattice of

a solid.

As the momentum increases, the function e(p) ceases to be linear, of course;

its subsequent form depends on the particular law of interaction between the

molecules of the liquid, and therefore cannot be determined in a general

form. It must be remembered that, for sufficiently large momenta, the func-

tion e(p) will not exist, since elementary excitations with too large momenta

are unstable and decompose into several excitations with smaller momenta

(and energies). 1
"

If the function e(p) for small p is known, we can calculate the thermo-

dynamic quantities for the liquid at temperatures close to absolute zero such

that practically all the elementary excitations in the liquid have low energies,

i.e. are phonons. The corresponding formulae can be written down without

special calculation by making direct use of the expressions derived in §61 for

the thermodynamic quantities in a solid at low temperatures. The only

difference is that, instead of the three possible directions of polarisation of

sound waves in a solid (one longitudinal and two transverse), in a liquid there

exists only one (longitudinal), and so all the expressions for the thermody-

namic quantities are to be divided by three. For example, the free energy of

liquid is

F = Fo~ F.jr2r4/90(#M)3, (66.2)

where F is the free energy of the liquid at absolute zero. The energy of the

liquid is

E = E + F-7r2r4/30(^)3
, (66.3)

and the specific heat

C = V-2rt2T*ll5(fiuf; (66.4)

this is proportional to the cube of the temperature.

Liquid helium (the isotope He4
) has an energy spectrum of this type. An

analysis of experimental values of its thermodynamic quantities shows that

they can be fully represented by the type of dispersion relation for elementary

excitations shown in Fig. 8: after an initial linear rise, the function e(p)

reaches a maximum, then decreases and passes through a minimum at a

certain value p of the momentum. t In thermal equilibrium, most of the

t The properties of the spectrum near the "termination point" of the curve e = e(p)

have been examined by L. P. PrrAEVSiai (Soviet Physics JETP 9, 830, 1959).

t A qualitative theory of this type of spectrum has been given by R. P. Feynman, Physical

Review 94, 262, 1954; see also L. P. PitaevskiI, Soviet Physics JETP 4, 439, 1957.
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elementary excitations in the liquid have energies in regions near the minima
of the function e(p), i.e. in the region of small e (near e = 0) and in the region
of e(>o). These regions are therefore of particular importance. Near the point

p = po, the function e(p) can be expanded in powers of the difference p—p .

There is no linear term in the expansion, and we have as far as the second-
order terms

e = d + (p-p )2/2fi, (66.5)

where A = e(p ) and p are constants. Quasi-particles of this type are called

rotonsJ

Fig. 8

The empirical values of the constants A, p and p are A = 8.5°K, p /fi =
1.9X10-8 cm"1

, p = 0.16 mHe (where mHe is the mass of the He*
atom).

Since the roton energy always includes the quantity A, which is large com-
pared with T at temperatures sufficiently low for a "roton gas" to be consider-

ed, this gas may be described by the Boltzmann distribution instead of the

Bose distribution. Accordingly, to calculate the "roton" part of the thermo-

dynamic quantities for liquid helium we start from formula (41.5):

F= -NT log
eV

N(2nhy •\
e-*l T d3

p.

The number N of particles in the roton gas is not a given number, but is

itself determined by the condition of minimum free energy. Equating dF/dN
to zero, we find for the number of rotons

Nr
=

(ijthy !
e- el T d3

p.

t The special name does not, of course, connote any fundamental difference between
phonons and rotons, which simply correspond to different parts of the same curve, and
there is a continuous transition from one to the other.
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The corresponding free energy is

F, = ^-=
I
e-°lT d3p.

VT
(2jthf

The expression (66.5) is to be substituted in these formulae. Since p 2» /xT,

in integrating with respect to p we can take the factor p2 outside the integral

and replace it by p 2 with sufficient accuracy. In integrating the exponential

we can extend the range of integration from — °° to <». The result is

(2^)3/^3
.

(666)

Fr = -TNr .

Hence the roton contributions to the entropy and the specific heat are

respectively

n *,r3 a /j\«i
(66 -7)

C^ N
i-4

+ T + {T)\'

We see that the temperature dependence of the roton part of the thermo-

dynamic quantities is essentially exponential. At sufficiently low tempera-

tures (below about 0.8°K for liquid helium) the roton part is therefore less

than the phonon part, while at high temperatures the position is reversed

and the roton contribution is greater than that of the phonons.

§67. Superfluidity

A quantum liquid with an energy spectrum of the type described above

must possess a remarkable property, known as superfluidity: the property of

flowing through narrow capillaries or slits without exhibiting viscosity.* Let

us first consider a liquid at absolute zero, at which temperature the liquid is in

its ground state.

Let us consider a liquid flowing along a capillary at a constant velocity .
Because of the friction against the walls of the tube and the friction within

the liquid itself, the presence of viscosity would have the effect that the kinetic

energy of the liquid would be dissipated and the flow would gradually

become slower.

It will be more convenient to discuss the flow in a co-ordinate system

moving with the liquid. In such a system the liquid (e.g. helium) is at rest,

and the walls of the capillary move with velocity —v. When viscosity is

present, the liquid at rest must also begin to move. It is physically evident

that the entrainment of the liquid by the walls of the tube cannot initiate

t This phenomenon was discovered in liquid helium (helium II) by P. L. Kapitsa (1938).
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movement of the liquid as a whole. The motion must arise from a gradual

excitation of internal motions, that is, from the appearance of elementary

excitations in the liquid.

Let us suppose that a single elementary excitation appears in the liquid,

with momentum p and energy e(p). Then the energy E of the liquid (in the

co-ordinate system in which it was originally at rest) is equal to the energy

e of the excitation, and its momentum Po is equal to p. Let us now return to

the co-ordinate system in which the capillary is at rest. According to the

familiar formulae of mechanics for the transformation of energy and
momentum, we obtain for the energy E and momentum P of the liquid in

this system

E = £ +Po'V+iM2>2
, P = Po+ Mv, (67.1)

where Mis the mass of the liquid. Substituting e and p for E and P , we have

E = e+ P'V+^A/i'2
.

The term %Mv2
is the original kinetic energy of the flowing liquid; the

expression e+p«v is the change in energy»due to the appearance of the

excitation. This change must be negative, since the energy of the moving

liquid must decrease: e+ p»v < 0.

For a given value of p, the quantity on the left-hand side of this inequality

is a minimum when p and v are antiparallel ; thus we must always have

e—pv < 0, or

v > e/p. (67.2)

This inequality must be satisfied for at least some values of the momentum p
of the elementary excitation. Hence the final condition for the occurrence of

excitations to be possible in the liquid as it moves along the capillary is

obtained by finding the minimum of e/p. Geometrically, the ratio e/p is the

slope of the line drawn from the origin (in the /?e-plane) to some point on the

curve e = e(p). Its minimum value is clearly given by the point at which the

line from the origin is a tangent to the curve. If this minimum is not zero,

then, for velocities of flow below a certain value, excitations cannot appear

in the liquid. This means that the flow will not become slower, i.e. that the

liquid exhibits the phenomenon of superfluidity.

The condition just derived for the presence of superfluidity is essentially

equivalent to the requirement that the curve e = s(p) should not touch the

axis of abscissae at the origin (ignoring the unlikely possibility that it touches

this axis at some other point). Thus any spectrum in which sufficiently small

excitations are phonons will lead to superfluidity.

Let us now consider the same liquid at a temperature other than absolute

zero (but close to it). In this case the liquid contains excitations, and is not

in the ground state. The arguments given above remain valid, since they made

no direct use of the fact that the liquid was originally in the ground state.
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The motion of the liquid relative to the walls of the tube when the above

condition is satisfied still cannot cause any new elementary excitations to

appear in it. It is, however, necessary to elucidate the effect of excitations

already present in the liquid.

To do this, we calculate as follows. Let us imagine that the "quasi-particle

gas" moves as a whole with respect to the liquid, with a translational velocity

v. The distribution function for the gas moving as a whole is obtained from

the distribution function n{e) for the gas at rest by replacing the energy s of

a particle by e— p.v, where p is the momentum of the particle. 1" Hence the

total momentum of the gas per unit volume is

-\ p«(e— p»v)d3
/>.

Let us assume that the velocity v is small, and expand the integrand in powers

of p»v. The zero-order term gives zero on integration over the directions of

the vector p, leaving

*=-j*.T)TT-d.,.

Integrating over the directions of the vector p gives

P== - w^ n \pi**p-6p. (67.3)

For phononst, e = up, and integration by parts gives

„ An C . dn(p) ,

i^ V
~3w '

P*n(j>
^
dp '

t For an ordinary gas this is a direct consequence of Galileo's relativity principle, and

is proved by a simple change of co-ordinates, but in the present case such arguments cannot

be applied directly, since the "quasi-particle gas" is moving not in a vacuum but "through

the liquid". Nevertheless, the statement remains valid, as can be seen from the following

argument. Let the excitation gas be moving relative to the liquid with velocity v. Let us take

a co-ordinate system in which the gas is at rest as a whole, and the liquid is accordingly

moving with velocity -v (system K). According to the transformation formula (67.1), the

energy E of the liquid in the system K is related to the energy in a system K where the

liquid is at rest by E = E -PQ*y+iMvz
. Let an elementary excitation of energy e(p) in

K arise in the liquid. Then the additional energy of the liquid in K is e-p«v, and this

proves the statement.

% For phonons, the function n(e) is the Bose distribution function with chemical potential

zero. Hence «(e-p-v) is proportional to l/(e(e-P ,v)/T -l). It should be noted that the

superfluidity condition v < e/p is precisely the condition for this latter expression to be

positive and finite for all energies.
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But the integral „„

upn(p)'4ap2 dp = I en(e) d3p
[

is just the energy Eph of the phonon gas per unit volume, so that we have
finally

P = v4£ph/3«2 . (67.4)

First of all, we see that the motion of the quasi-particle gas is accompanied
by a transfer of mass: the effective mass per unit volume of the gas is deter-

mined by the proportionality coefficient between the momentum P and the

velocity v in (67.3) or (67.4). On the other hand, in the flow of a liquid along

a capillary (say) there is nothing to prevent the "particles" of this gas from
colliding with the walls of the tube and exchanging momentum with them.

In consequence the excitation gas will be slowed down, like any ordinary gas

flowing along a capillary.

Thus we have the following fundamental result. At non-zero temperatures,

part of the mass of the liquid will behave as a normal viscous liquid which

"sticks" as it moves along the walls of the vessel; the remaining part of the

mass will behave as a superfluid without viscosity. Here it is very important

that there is "no friction" between these two parts of the mass of the liquid

as they pass "through one another", that is, there is no transfer ofmomentum
from one to the other. For the existence of such motion of one part of the

mass of the liquid relative to the other has been derived by the consideration

of statistical equilibrium in a uniformly moving excitation gas. But if any

relative motion can occur in a state of thermal equilibrium, it is not accom-

panied by friction.

It should be emphasised that the treatment of the liquid as a "mixture" of

normal and superfluid "parts" is simply a form of words convenient for the

description of the phenomena occurring in a quantum liquid. Like any

description of quantum effects in classical terms, it is not entirely adequate.

In reality we should say that in a quantum liquid there can exist simultane-

ously two motions, each of which has a corresponding "effective mass" such

that the sum of these two masses is equal to the actual total mass of the

liquid. One of these motions is "normal", i.e. has the same properties as that

of an ordinary viscous liquid; the other is "superfluid". The two motions

occur without transfer of momentum from one to the other. It is particularly

emphasised that no distinction is made between "superfluid" and "normal"
among the actual particles of the liquid. In a certain sense we can speak of

superfluid and normal masses of liquid, but this does not mean that the liquid

can really be separated into two such parts. 1
"

tConcerning the hydrodynamic properties of a superfluid liquid see Fluid Mechanics,
Chapter XVI.



§67 Superfluidity 195

Formula (67.4) determines the normal part of the mass of the liquid at

temperatures so low that all the elementary excitations may be regarded as

phonons. Substituting the expression given by (66.3) for the energy of the

phonon gas, we find for the normal part gn of the density of the liquid

on = 27i2r4/45fl3«5 . (67.5)

To calculate the roton part of qn we note that, since the rotons can be described

by a Boltzmann distribution, dn/de = — n/T, and from (67.3)

47t f 4 a l f P2n az P2 Nr

37TW \" " ^ - Zf) -&W F ~ 3T

Since pQ
2 » i*T, we can put/?2 = p

2 with sufficient accuracy; also substitut-

ing Nr
from (66.6), we have finally

(gn)r = p<?Nr/3TV =
3(^3^3 ^' T

- (6™)

The roton part of Qn is comparable with the phonon part at about 0.6°K

and predominates at higher temperatures.

As the temperature increases, an increasing fraction of the mass of the

liquid becomes normal. At the point where the whole of the liquid mass

becomes normal, the property of superfluidity disappears entirely. This is

called the X-point of the liquid (2.19°K for helium) and is a phase transition

point of the second kind.

The part of the curve gn(T) near the A-point cannot be calculated exactly,

of course. But because of the very rapid increase of gn given by (67.6) we may

expect that the temperature of the A-point can be approximately obtained by

putting qJq = 1 and using that formula. Such a calculation gives a value

2.8°K, in fair agreement with the true value.

A phase transition of the second kind always involves the appearance or

disappearance of some qualitative property (see §137). In the case of the

A-point of liquid helium, this change can be macroscopically described as the

appearance or disappearance of the superfluid component of the liquid. From

the deeper microscopic viewpoint the change concerns certain properties of

the density matrix of the atoms in the co-ordinate representation. This

matrix £(r', r) is defined as the integral

e(r',r)= [Y*P,qyP(]r,q)dq9

I

where If^r, q) is the wave function of the body, r denoting the radius vector of

one particle and q the set of co-ordinates of all the other particles, the integra-

tion being over the latter. For an isotropic body (a liquid) the density matrix

depends only on the co-ordinate differences lr' — r|. For ordinary liquids the
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value of q(t', r) tends to zero when the distance r'-r increases indefinitely,

but for a superfluid liquid the limit is not zero.

The Fourier components of the density matrix, i.e. the integrals of the form

{
e(r\ r)eik

-<*'- r
) d3

(r' - r), (67.7)

are the same, apart from a constant factor, as

I
^(r, q)eik'*dV dq,

i.e. they determine the probability distribution for the various values of the

momentum p = hk of the particle. If q(t', r) -* when
|
r' — r

|

-* «=, then the

probability density (in p-space) remains finite as p -*- 0, but if q(t', r) has a

finite value q^, at infinity, the value of the integral (67.7) tends to infinity

as p -* 0, the integral being equal to (27r)3g005(k). This corresponds to a

finite probability of zero momentum of the particle; it may be noted

in passing that q^, which determines this probability, must be positive.

Thus this property of the density matrix is equivalent to the statement that

in a superfluid liquid, unlike a non-superfluid, a finite number of particles

have zero momentum. However, to avoid misunderstanding we must empha-

sise that these particles cannot be identified with the "superfluid part" of the

liquid. Apart from the fact that such an identification could have no justifica-

tion, its incorrectness is seen from the fact that at absolute zero the whole of

the liquid becomes superfluid, whereas by no means all its particles have zero

momentum. 1
"

§68. Quantum liquids with Fermi-type spectrum

It has already been noted in §66 that any quantum liquid composed of

particles with integral spin must have a Bose-type spectrum. A liquid com-

posed of particles with half-integral spin, on the other hand, can also have a

spectrum of another type, which may be called a Fermi-type spectrum ; the

liquid helium isotope He3
is of this kind. It must be emphasised, however,

that a spectrum of this type cannot be a universal property of liquids con-

sisting of particles with half-integral spin. The type of spectrum depends also

on the specific nature of the interaction between atoms. This is clear from

the following simple consideration : if the interaction is such that it causes

the atoms to tend to associate in pairs, then in the limit we obtain a

t All these properties of the particle distribution function are evident consequences of

the model discussed below (§78) of a slightly non-ideal Bose gas at temperatures close to

zero, when it is certainly "superfluid".
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molecular liquid consisting of molecules with integral spin and therefore

having a Bose-type spectrum.

The energy spectrum of a Fermi-type quantum liquid has a structure which

is to some extent similar to that of an ideal Fermi gas. The ground state of the

latter corresponds to the case where all the quantum states of individual

particles with momenta from zero to some po are occupied. The excited states

of the gas occur when a particle goes from a state in the occupied band to a

state with p > po-

In a liquid, of course, there are no quantum states for individual particles,

but to construct a spectrum of this type we start from the assumption that the

classification of energy levels remains unchanged when the interaction be-

tween the atoms is gradually "switched on", i.e. as we go from the gas to the

liquid. In this classification the gas particles become the elementary excita-

tions, whose number is equal to the number of atoms and which obey Fermi

statistics.

Each of these quasi-particles has a definite momentum (we shall return

later to the question of the validity of this assumption). Let »(p) be their

momentum distribution function. The above principle of classification con-

sists in supposing that, if this function is given, the energy E of the liquid is

uniquely determined and that the ground state corresponds to a distribution

function in which all quasi-particle states with absolute magnitudes of mo-

mentum lying in a certain restricted interval are occupied. In the simplest but

most natural case this interval extends, as in the gas, from zero to a certain

limiting value p , forming a sphere in momentum space (called the Fermi

sphere).^ In other words, the ground state Corresponds to a "step function"

for the quasi-particle distribution, which ends abruptly at p = p . The value

of po is related to the density of the liquid (number of particles per unit

volume) by the same formula as for a gas.

It is most important to emphasise that the total energy E of the liquid is

not simply the sum of the energies e of the quasi-particles. In other words, E
is a functional of the distribution function in a general form, and does not

reduce to the integral fne dr (as it does for a gas, where the quasi-particles

are the same as the actual particles).

Since the primary concept is E, the question arises how the energy e of a

quasi-particle should be defined.

We shall normalise the distribution function by the condition

/
ndt = N/V, (68.1)

t In principle it might be possible for a "cavity" to appear within this sphere during the

gradual transition from a gas to a liquid, so that the ground state would correspond to the
occupation of all states with absolute values of momentum lying in the interval between
two finite non-zero values.
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where N is the number of particles in the liquid of volume V, and dt here

denotes d3p/(27ifi)3 ; this condition will later be made more precise. The change

in E due to an infinitesimal change in the distribution function may be written

as

dE/V = [ edn dr. (68.2)

1

The quantity e is the functional derivative of the energy with respect to the

distribution function, and corresponds to the change in the energy of the

system when a single quasi-particle of momentum p is added. This quantity

plays the part of the Hamiltonian of a quasi-particle in the field of the other

particles. It is also a functional of the distribution function, i.e. the form of the

function e(p) is determined by the distribution of all the quasi-particles in the

liquid.

In this connection it may be noted that an elementary excitation in the type

of spectrum considered may in a certain sense be treated like an atom in the

self-consistent field of other atoms. This self-consistency is, of course, not to

be understood in the sense usual in quantum mechanics. Here its nature is

more profound ; in the Hamiltonian of the atom, not only is allowance made

for the effect of the surrounding particles on the potential energy, but the

dependence of the kinetic-energy operator on the momentum operator is

also modified.

It is easy to see that the quasi-particle distribution function is (in equilib-

rium) an ordinary Fermi distribution, the particle energy being represented

by the quantity s defined according to (68.2). For, because the energy levels

of the liquid and of the ideal Fermi gas are classified in the same manner, the

entropy of the liquid is determined by a similar combinatorial expression

S= -f {« log «+(!-«) log (l-w)}dT (68.3)•j,

to that for a gas (cf. (54.3)). Varying this expression with the additional

conditions of constant total number of particles and constant total energy

(the variation of the latter is given by formula (68.2)), we obtain the required

distribution

:

7i= l/(e<«-">/ T+l). (68.4)

It must be emphasised, however, that, despite the formal analogy between this

expression and the ordinary Fermi distribution, it is not precisely the same,

since e is itself a functional of n, and formula (68.4) is therefore, strictly

speaking, a very complicated implicit expression for n.

Hitherto we have ignored the possible spin of the quasi-particles. In reality

all the quantities («, e, etc.) are not only functions of momentum but also

operator functions of the operator (matrix) of the spin s of the quasi-particles.
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If the liquid is in thermal equilibrium, it is homogeneous and isotropic; the

scalar quantity e can then depend only on scalar arguments. The operator

s can therefore appear only in the form s2 or (s«p)2 ;the first power of the

product s»p is inadmissible, since the spin vector is axial and this product is

therefore a pseudoscalar, not a true scalar. For spin \ we have s2 = f,

(s.p)2 = £p
2
, so that s does not appear. Thus in this case the energy of a

quasi-particle is independent of its spin.

The fact that e is independent of the spin signifies that all the energy levels

of the quasi-particles are doubly degenerate. The statement that a quasi-

particle has spin is essentially an expression of the existence of this degener-

acy. In this sense we can say that the spin of the quasi-particles in a spectrum

of the type considered is always \, whatever the spin of the actual particles

in the liquid. For with any spin s other than \ the terms of the form (s.p)2

would give a splitting of the (2.S+ l)-fold degenerate levels into ^(2j+1)

doubly degenerate levels. In other words, \{2s+ 1) different branches of the

function e(p) appear, each corresponding to quasi-particles "with spin -J".

To simplify the formulae, we shall assume in what follows that all quanti-

ties are independent of the spin operator. Then the presence of spin £ can be

taken into account by including a factor 2, which we shall incorporate in the

definition of dr:

&t = 2 &pl(2nhY.

When spin dependence is present, the formulae are modified only in that the

integration over phase space must be accompanied by the taking of the trace

of matrix functions.

Let us now return to the assumption made above that a definite momentum
can be assigned to each quasi-particle. The condition for this assumption to

be valid is that the uncertainty of momentum (due to the finite mean free

path of the quasi-particle) should be small not only in comparison with the

momentum itself but also in comparison with the width of the "transition

zone" of the distribution (over which it differs appreciably from a step func-

tion). It is easy to see that this condition is satisfied if the distribution «(p)

differs from a step function only by a fairly small deviation near the limiting

momentum, i.e. near the surface of the Fermi sphere. For, by Pauli's prin-

ciple, only quasi-particles in the transition zone of the distribution can un-

dergo mutual scattering, and as a result of this scattering they must enter free

states in that zone. Hence the collision probability is proportional to the

square of the width Ap of the zone. Accordingly, the uncertainty of momen-
tum due to scattering processes is also proportional to (Ap)2 . It is therefore

clear that, when Ap is sufficiently small, the uncertainty in momentum will

be small in comparison not only with p but also with Ap.

Thus the method described is valid only for excited states of the liquid

which are described by a quasi-particle distribution function differing from
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a step function only in a small region near the upper limit. In particular, for

thermodynamic equilibrium distributions only sufficiently low temperatures

(small compared with the degeneracy temperature T ) are permissible. In

these conditions we can, as a first approximation, replace the functional e in

(68.4) by its value calculated for a step-function distribution. Then e becomes

an entirely definite function of the magnitude of the momentum, and formula

(68.4) reduces to the ordinary Fermi distribution.

Thus the function s{p) has a direct physical significance only in the neigh-

bourhood of the surface of the Fermi sphere. Expanding this function in

powers ofp—po there, we have

Ae = e— /j,
=* Vo(p—po), (68.5)

where
v = [de/dp]p=Po (68.6)

is the "velocity" of the quasi-particles on the Fermi surface.
1-

In an ideal

Fermi gas, where the quasi-particles are identical with the actual particles,

we have e = p
2/2m, and so vo = po/m. By analogy we can define for a Fermi

liquid the quantity

m* = po/vo, (68.7)

called the effective mass of the quasi-particles. $

This quantity determines, in particular, the specific heat of the liquid at

low temperatures, which is given by the same formula (57.6) as for a gas,

with m replaced by m*. This follows from the fact that the expression (68.3)

for the entropy in terms of the distribution function is the same for a liquid

and for a gas, and so is the expression (68.4) for the distribution function in

terms of e, and in calculating the integral (68.3) only the interval of momenta

near po is important.

Let be denote the change in energy of a quasi-particle caused by a small

deviation of the distribution function from step-function form. This quantity

must be a linear functional:

MP)= |7(P, P')M dr'. (68.8)

The function /(p, p') is the second functional derivative of E, and is therefore

symmetrical in the variables p and p'. It plays an important part in the

theory of the Fermi liquid. In the ideal-gas approximation, / = 0.

t It may be noted that a spectrum of this type does not admit the appearance of super-

fluidity. In the discussion in §67 it is now necessary to write Ae in place of e, and the

inequality (67.2) v =~ Ae/p can be satisfied for any v.

t For liquid He3
, pjh at 0.8X 108 cm-1 , m* as 2.4/wHe s. It may also be noted that for

liquid He3 the theory given here is quantitatively valid only for temperatures up to a few
tenths of a degree-
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The function / depends, in general, not only on the momenta but also on

the spins. Whereas the fundamental distribution is isotropic, the function /will

in general contain terms of the form <l>ik(p, p'^A- In particular, the exchange

interaction of the quasi-particles leads to terms of the form 0(p, p')s«s'.

Below, however, we shall assume for simplicity that the function / is inde-

pendent of the spins.

In the absence of an external field, the momentum of the liquid per unit

volume is the same as the current density of mass; this follows directly from

Galileo's relativity principle. The velocity of a quasi-particle is 3e/3p, and

so the quasi-particle current is given by fn(de/dp) dr. Since the number of

quasi-particles in the liquid is equal to the number of actual particles, it is

clear that, in order to obtain the total transfer of mass by quasi-particles,

we must multiply their number current by the mass m of an actual particle.

Thus we obtain the equation

fpn dr = f w(8e/3p)« dr. (68.9)

Varying both sides of this equation and using (68.8), we have

fp<$«dr = mf|^ bndt + m f f
8^' v)

n bn' dx dx'

= m l^- bn dx - m /(p, p') ^7 bn dr dx';

in the second integral on the right we have renamed the variables of integra-

tion and integrated by parts. Since bn is arbitrary, this gives

M-f'S d*'- ^
Let us now apply this relation to momenta near the boundary of the Fermi

distribution, at the same time replacing the distribution function by a step

function. Then the energy e is a function of momentum for which the ex-

pression (68.5) may be used, and the derivative 8«/3p is essentially a delta

function: 8«/8p = -(p/p)b(p—po). This enables us to integrate over the

magnitude of the momentum in (68.10):

I

<to' 2p'*dp'do' _ _Jpo_ ,
, , . ,

/
8P ' (2jiny ~ (27tfif

WVo

In the function /(p, p') both arguments are taken to have magnitude po, so

that/ actually depends only on the angle 6 between po and p '. Substituting

this result in (68.10), multiplying both sides by p and then dividing by p 2
, we

obtain the following relation between the actual mass of the particles and the
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effective mass of the quasi-particles:

Finally, let us calculate the compressibility of a Fermi liquid (at absolute

zero) or, what is the same thing, the velocity of sound in it, which is the

square root of the compressibility. 1 The density of the liquid is q = mN/V,
and the square of the velocity of sound is

dP V2 dP
,2 —

d(mN/V) mN dV

For T = 0, S = also, and so it is not necessary to distinguish the isothermal

and adiabatic compressibilities. To calculate this derivative we may express

it in terms of the derivative of the chemical potential. Since the latter depends

on N and V only through the ratio N/V, we have

8/* _ _ V_ fy _ _V* 8P
m

dN~ N dV~ N*dV'

for T = constant = 0, d^ = -V dP/N. Thus

N fy
m dN'

"2 = ^ %• (68.12)

Since /* = e(p ) = e , the change dp resulting from a change in the number
of particles by bN is

bfi = [fbri dr'+ Ji- bp . (68.13)

J °P°

The second term appears because a change in the total number of particles

also affects the value of the limiting momentum, bN and dpo being related by

2'4np *dp V/(2nh)* = dN.

Since bri is appreciably different from zero only when p as po, we can

write for the integral in (68.13)

[fbri dr' =* f/do' f bri dt'l47i = f/do' bN/47iV.

Substituting this in (68.13) and putting de /dp = Po/m*, we obtain

(M)3

+
%np6m*V

t It must be remembered, however, that in practice ordinary sound could not be pro-

pagated in a Fermi liquid at absolute zero, since its viscosity increases without limit as

T-+0.
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Finally, substituting m* from (68.11) and multiplying by N/m = 2-4np z Vf

2>{2xh)zm, we have

»*=£+M0- 4

\
f(1

-cos6)d°'- (6814)

If the function /depends on the spins of both particles, the factor 4 before

the integrals in (68.11) and (68.14) must be replaced by the trace taken over

both spin variables.

The above type of energy spectrum for a Fermi liquid may be unstable in

certain conditions. The liquid then enters a state characterised by a spectrum

of a different type (with an "energy gap"), in which it has the property of

superfluidity. This is caused by the existence of forces of attraction between

the atoms of the liquid at sufficiently low temperatures. The nature of the

resulting spectrum will be discussed in §80, using the model of a Fermi gas

with a weak attraction between particles.1

§69. The electronic spectra of metals

The concept of elementary excitations is also needed in order to describe

the electronic spectra of solids. The electron shells of the atoms in a crystal

interact strongly with one another, and so it is not possible to speak of the

energy levels of individual atoms, but only of levels for the assembly of

electron shells of all the atoms in the whole body. The nature of the electronic

spectrum is different for different types of solid.

An "electron liquid" in a normal (not superconducting) metal has a spect-

rum of the Fermi type discussed in §68. Such a spectrum has, as we have seen,

a structure similar to that of the spectrum of an ideal Fermi gas. In the pres-

ent case, however, we are concerned with electrons in an external electric

field created by the nuclei of the atoms (which we regard as fixed in their

equilibrium positions at the lattice sites). We must therefore ascertain first of

all the properties which an "ideal gas" of electrons would have in such a

field. This problem is equivalent to that of the behaviour of a single electron

in an external field periodic in space; the latter problem was first considered

by F. Bloch (1929). The periodicity of the field means that it is unchanged

in a parallel displacement by any vector of the form a = .Siai-f S2&2+S3&3,

where ai, a2, a3 are the basic lattice vectors

:

t/(r+a) = U(t). (69.1)

Hence the Schrodinger's equation which describes the motion of an electron

in such a field is also invariant under any transformation r -» r+a.

t When the temperature is sufficiently low this effect must ultimately occur in liquid

He3 (as shown by L. P. Pitaevskii, 1959). The reason is that in the interaction of neutral

atoms there is always a range of distances (large compared with atomic dimensions) where

there is attraction, called the van der Waals attraction; see Quantum Mechanics, §89.
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From this it follows that, if y(r) is the wave function of a stationary state,

then y(r+a) is also a solution of Schrodinger's equation, and describes the
same state of the electron. This means that the two functions must be the
same apart from a constant factor: y(r+a) = constant Xip(r). It is evident

that the constant must be of unit modulus, since otherwise the wave function

would tend to infinity on repeating the displacement through a (or —a) an
unlimited number of times. The general form of a function having this prop-
erty is

VnkOO = e,k
* r
Wnk(r), (69.2)

where k is an arbitrary (real) constant vector and unk a periodic function:

«nk(r+a) = «nk(r). (69.3)

For a given value of k, Schrodinger's equation has in general an infinity

of different solutions, corresponding to an infinite discrete set of different

values of the electron energy e(k), and labelled by the suffix n in ynk . A similar

suffix (frequently called the energy band number) must be added to the various

branches of the function e — en(k).*

All the functions ynk with different n or k are, of course, orthogonal. In

particular, the orthogonality of the functions unk follows from that of the

Writ witn different n and the same k, and because of their periodicity the

ntegration need be taken only over the volume v of one unit lattice cell. With

the appropriate normalisation,

f
"n'k*Wnk dv = dnn -

. (69.4)

The significance of the vector k is that its value determines the behaviour

of the wave function under translation, this function being multiplied by

e
lk '& when r -* r+a:

Vnk(r+a) = eik>nk(r). (69.5)

Hence it follows immediately that the value of k is by definition non-unique

:

values differing by a vector of the form 2jib (where b denotes, as in §65, any

vector of the reciprocal lattice) lead to the same behaviour of the wave func-

tion under translation (since the factor e
l(*+2nh) ' a

' = e
lk ' a

). In other words,

such values of k are physically equivalent ; they correspond to the same state

of the electron, i.e. the same wave function. We may say that the functions

ynk are periodic (with the periods of the reciprocal lattice) with respect to the

suffix k:

Vn,k+ 2nb(r) = Vnk(r). (69.6)

t The general properties of the multi-sheet hypersurface e = eH(kx , kv , k z) resulting

from the symmetry of the lattice are the same as those of the phonon hypersurface co —
<o(Jkx , ky , kt) mentioned in §65.
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The energy is likewise periodic

:

en(k+ 2rcb) = en(k). (69.7)

The functions (69.2) bear a certain similarity to the wave functions of the

free electron, y = constantXeip 'r/fi
, the conserved momentum being rep-

resented by the constant vector p = hk. As with the phonon, we are again

led to the concept of the "quasi-momentum" of an electron in a periodic

field. It should be emphasised that there is no actual conserved momentum

in this case, since there is no law of conservation of momentum in an external

field. Nevertheless, it is worth noting that an electron in a periodic field is

still characterised by a certain constant vector. t

All the physically different values of the vector k/2rc lie in a single unit

cell of the reciprocal lattice. The "volume" of this cell is l/v, where v is the

volume of a unit cell in the crystal lattice itself (see §135). On the other hand,

the volume of k-space, divided by (2jt)3
,
gives the number of corresponding

states "belonging" to a finite (unit) volume of the body. Thus the number of

states (per unit volume of the crystal) included in each energy band is l/v,

i.e. equal to the number of unit cells.

Let us next consider two electrons in a periodic field. Considering them

together as one system with wave function ip(ti, r2), we find that, under a

parallel displacement (ri — ri+a, r2 -* r2 +a), this function must be multi-

plied by a factor of the form e
{*' a

, where k may be called the quasi-momentum

of the system. On the other hand, when the distance between the electrons is

large, ip(ri, r2) reduces to the product of the wave functions of the individual

electrons and is multiplied by e
lk

i-

v

k*" B
in the translation.

The equation e
ik-a = g*(ki+ki>-» shows that

k = ki+k2 +27rb.

t In a stationary state with a given quasi-momentum fik, the true momentum can take an

infinite number of values of the form #(k+ 2rcb) with different probabilities. This follows

from the fact that the expansion of a periodic function in Fourier series has the form

link = £ ankbe2 'Tib-r
,

b

and so the expansion of ^nk (69.2) in plane waves is

Vnk = £flnkbe'(k+2,tb )* r
.

b

The property (69.6) signifies that the coefficients in this expansion must depend on k and

b only through the sum k+ 2n:b, so that we can write

V„k = I«„,k +2
^'(k+27lb) -r

- (69.2a)

b

The two properties (69.5) and (69.6) appear explicitly from this representation of the wave

function. Equating (69.2) and (69.2a) and integrating over the volume of the unit cell, we
obtain

= vj ,,*(r)dr -



206 The Condensed State §69

Hence, in particular, it follows that, in a collision of two electrons moving in

a periodic field, the sum of their quasi-momenta is conserved apart from a
vector of the reciprocal lattice:

ki+k2 = k;+ k£+2jrb.

A further analogy between the quasi-momentum and the true momentum
is seen when we determine the mean velocity of the electron. To calculate this,

we must know the velocity operator v = f in the k representation. The opera-

tors in this representation act on the coefficients cnk in an expansion of an
arbitrary wave function tp in terms of the eigenfunctions tp^ (69.2):

V = E CnlakVnkd3
A:. (69.8)

Let us first find the operator r. We have identically

*V = I f Cn^n^k = £ f Cnk (-i^+ie*-r^\ &k.

In the first term we integrate by parts, while in the second term we expand

the function 8i/nk/9k (which, like «nk itself, is periodic) in terms of the set

of mutually orthogonal functions «nk with the same k, writing the expansion

in the form

n

Then we obtain

*V> = £ W -|j^ &k+ i £ CniAkVmk dzk

= 2 ff'^F + ilQZ£cm*Ur*d*k.
n J I m J

On the other hand, from the definition of the operator r we must have

fy = y! ('CnkMikd3A:.
n J

Comparing this with the expression obtained above, we find

r = id/dk+id, (69.10)

where the operator J? is specified by its matrix Q™£. It is important to notice

that this matrix is diagonal with respect to the suffix k.

The velocity operator is obtained, according to the general rules, by com-
muting the operator r with the Hamiltonian. In the k representation, the

Hamiltonian is just the energy e(k) expressed as a function of k. Hence we
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have

v = (i/fi) (ef — fe)

or

The matrix elements ofQ are related to those of Q by

ft* = j[«»(k)-«m(k)]flSk-

We see from this that J?£| = 0, i.e. Q has no elements diagonal in the band

number.

The mean value of the velocity is equal to the diagonal matrix element of

the operator (69.11). Using the above result we have

v = 3e(k)/«ak, (69.12)

in complete analogy to the usual classical relation.

Thus we have elucidated the main fundamental differences between the

nature of the classification of states for a free electron and an electron in a

periodic field. For the former, the particle energy is uniquely determined by

its momentum, which can take a continuous and unlimited range of values.

For the latter, the continuous parameter is represented by the quasi-momen-

tum, and all its physically non-equivalent values lie in a finite interval—the

reciprocal lattice cell. In addition to this continuous parameter, the electron

energy depends also on a discrete quantum number, the band number.
1-

In each band the energy takes values in a certain finite interval ; it is important

to note that different bands may partly overlap (though retaining their

"individuality", of course, since a different dispersion relation e = en(k) cor-

responds to each band).

All these properties apply to the classification of levels in the spectrum of

an electron Fermi liquid in a metal, the particles (electrons) being represented

by quasi-particles. An important characteristic of this spectrum for any partic-

ular metal is the shape and position of the limiting Fermi surface in k-space

(the reciprocal lattice). This surface may have various and in general compli-

cated forms. It may be singly or multiply connected, closed or open. The
latter means that the Fermi surface may enclose certain finite regions of the

reciprocal lattice cell, or it may cut off a part of the cell volume bounded by

the faces of the cell. If we imagine the Fermi surface to be continued in a

periodic manner throughout the reciprocal lattice, each cell will contain

t The dependence on the spin projection (in a non-magnetic metal) is very slight, and we
shall ignore it.
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similar closed regions, but the open surfaces will run continuously throughout
the reciprocal lattice. We shall not pause here to make a detailed study of the

topological properties of Fermi surfaces, which affect the kinetic properties

of the metal rather than its thermodynamic properties.

It is important to note that the Fermi surface, being a surface of equal

energy en(k) = //, (the limiting energy is the same as the chemical potential

(i at absolute zero), in general comprises various sheets corresponding to

several overlapping bands (the value of ft is, of course, the same for all bands).

In an isotropic "free" Fermi liquid, as discussed in §68, the Fermi surface

is a sphere whose radius is determined by the density of the liquid. A similar

relation applies to the electron liquid in a metal, but the specific features

resulting from the periodicity of the lattice field lead to some changes in the

way in which this relation is formulated.

The number of electrons in the metal may conveniently be referred to one
unit lattice cell. Let v be the total number of electrons in the atoms in one
cell, and let AFn denote the fraction of the reciprocal lattice cell volume lying

"below" the Fermi surface of the wth energy band (i.e. the part of the volume

in which en(k) < p). Then the relation

j>-2/=2£ JFn (69.13)
n

holds, where / is some integer and the factor 2 on the right-hand side takes

into account, as usual, the two orientations of the quasi-particle spin. The

intuitive significance of the particular feature of this relation—the subtraction

of an even integer from v—is clear from the analogy with the spectrum of an

ideal Fermi gas (in a periodic field). The number 2/ corresponds to electrons,

completely occupying the / lowest bands, so that the position of the limiting

energy in the partly occupied bands is determined by the number of electrons

which belong only to these bands.

In accordance with the same analogy with the ideal-gas spectrum, we can

say that each quasi-particle transports in its motion a charge equal to that

of the electron. 1
"

It has already been mentioned in §68 that the function £(p) has direct

physical significance as the energy of a quasi-particle only in the neighbour-

hood of the Fermi surface. This neighbourhood also determines the electronic

parts of the thermodynamic quantities for the metal (the principal terms in

their expansions at temperatures considerably below the degeneracy tem-

peraturet). The difference from an ideal gas arises, in this approximation,

t We may note that on the basis of very general considerations we can certainly exclude

the possibility that the effective charge carried by a quasi-particle is not constant but depends
on the state of the metal. In an inhomogeneous body this charge would then vary through

the body, and this would violate the gauge invariance of the equations of electrodynamics.

t For most metals the electron degeneracy temperature is of the order of 104 degrees.
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only from the different number of states of the quasi-particles near the Fermi

surface.*

Let the number of states (per unit volume of the metal) belonging to the

energy range de be q de. The volume element in p-space between infinitely

close surfaces of equal energy [x and ti+ ds is dfde/v, where d/is an element

of area on the Fermi surface, and v the magnitude of the vector v = 8e/6p nor-

mal to that surface (the quasi-particle "velocity" on the Fermi surface). Hence

' = ds??ft'
(69 ' I4)

where n is the band number and the integration is over the whole of the Fermi

surface within one reciprocal lattice cell (when the Fermi surface is an open

one, the cell faces are not, of course, included in the region of integration).

The quantity (69.14) replaces in the thermodynamic quantities the express-

ion which for a gas of free particles (where the Fermi surface is a sphere of

radius p ) has the form

2 4np 2 _ mpo

(Inhfpolm ~tfW>'

For example, the thermodynamic potential Q of a metal is (cf. (57.2))

Q = Qo-^qVT2
;

(69.15)
6

the term Qq includes the lattice part of the potential and the contribution

from the electrons for T = 0. Regarding the second term in (69.15) as a small

correction to Qo, we can (cf. §§57 and 64) write down a similar formula for

the thermodynamic potential :

= Qo-^oVT2
, (69.16)

6

where now q and V are assumed to be expressed in terms of P and T (in the

"zero-order approximation").

Determining the entropy from (69.16), and then the specific heat, we find

for the electron contribution to the latter

Ce
= WqVT. (69.17)

The total specific heat of the metal consists of the electron and lattice parts.

The latter is proportional to T3 (for T*zz 0), so that at sufficiently low tem-

peratures the electron contribution to the specific heat becomes predominant.

For the same reason, the electron contribution to the thermal expansion

of the metal also becomes predominant in this range of temperatures.

t To avoid misunderstanding,we should emphasise that formulae (68.1 1)-(68.14) derived

in §68 for a Fermi liquid not in an external field do not, of course, apply to an electron

liquid in a metal.
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Determining from (69.16) the volume V — d&/dP and hence the thermal ex-

pansion coefficient a = (l/V)(dV/dT)p, we find

*e= ~Twip (VQ) - (69 - 18)

It may be noted that here, as also in the high-temperature range (see §64),

the ratio a/C is independent of temperature.

The interaction between electrons and lattice vibrations (phonons) causes

no qualitative change in the energy spectrum of a normal metal, and is

important only as regards kinetic effects, but it causes the appearance of a

certain effective attraction between the electrons, the mechanism ofwhich may
be described as an exchange of a phonon in the mutual scattering of two
electrons. When this effect is sufficiently large, it may predominate over the

Coulomb repulsion of the electrons, and so there may occur at low tempera-

tures the change in the nature of the spectrum mentioned at the end of §68

and the appearance of superconductivity.

§70. The electronic spectra of solid dielectrics

The principal feature of the energy spectrum of a dielectric non-paramag-

netic crystal (a topic first discussed in 1931, by Ya. I. Frenkel') is that even

the first excited level is at a finite distance from the ground state—that is,

there is an "energy gap" between the ground level and the spectrum of ex-

cited levels. The existence of this gap, which in ordinary dielectrics is of the

order of a few electron-volts, means that the "electronic parts" of the thermo-

dynamic quantities are exponentially small (proportional to e~ A,T, where A
is the width of the gap).

An elementary excitation in the spectrum under consideration can be intui-

tively described as an excited state of an individual atom, but this state can

not be assigned to any particular atom; it is "collectivised" and is propagated

in the crystal in the form of an "excitation wave", as it were jumping from

one atom to another. As in other cases, these excitations may be regarded as

quasi-particles, here called excitons, which have definite energies and quasi-

momenta. Like all excitations that can appear singly, excitons have integral

angular momenta and obey Bose statistics.

For a given value of the quasi-momentum p, the energy of an exciton can

take a discrete series of different values en(p). The components of the quasi-

momentum can take, as we know, a continuous series of values in finite inter-

vals, and for each n the function en(p) gives a "band" of exciton energy values;

different bands may partly overlap. The least possible value of the functions

sn(p), i.e. the least possible energy of the exciton, as already mentioned, is

not zero.
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As well as excitons, excitations of another type may be present in a dielec-

tric. These may be regarded as resulting from the ionisation of individual

atoms. Each such ionisation causes the appearance in the dielectric of two

independently propagated "particles": an electron and a "hole". The latter

is a "lack" of one electron in an atom, and therefore behaves as a positively

charged particle. Here again, when speaking of the motion of electrons and

holes in a crystal, we really mean of course certain "collective" excited states

of the electrons in the dielectric which (unlike the exciton states) are accom-

panied by the transfer of a negative or positive unit charge.

Electrons and holes have half-integral spin and obey Fermi statistics, but

this does not mean that the electron-hole spectrum of a dielectric resembles

the Fermi-type spectrum described in §68. A characteristic feature of the

latter is the existence of a limiting value p of the momentum, but in the pres-

ent case there is no such quantity, and an electron and hole appearing simul-

taneously can have entirely arbitrary quasi-momenta.

The electron and the hole have a Coulomb interaction. The spectrum of

eigenvalues of the energy of particles with Coulomb attraction consists of a

discrete series of negative levels which become increasingly close together as

the value zero is approached, at which a continuous spectrum of positive

values begins. In the present case the discrete levels correspond to exciton

excitations ("bound" electrons and holes) and the continuous levels to elec-

tron-hole excitations. We can therefore say that, for a given value of the quasi-

momentum, the possible values of the exciton energy form a discrete series

which become increasingly close together as the energy increases and pass into

a continuous series of values corresponding to a freely moving electron and

hole.

In the foregoing discussion the electron spectrum has been considered in

isolation from the motion of the atomic nuclei, which have been assumed

fixed at the crystal lattice sites. This assumption is by no means always justi-

fied. The interaction of the electrons with the lattice vibrations may be so

strong that the above treatment is inadmissible. In a dielectric, the interaction

of an electron with the vibrations of the lattice deforms it in the vicinity of

the electron, and this deformation, of course, considerably affects also the

motion of the electron itself. An electron together with the lattice deforma-

tion which it causes is called a polaron, a concept first used by S. I. Pekar

(1946).

§71. Negative temperatures

Let us now consider some peculiar effects related to the properties of para-

magnetic dielectrics. In such substances the atoms have angular momenta,
and therefore magnetic moments, which are more or less freely oriented. The
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interaction of these moments (magnetic or exchange interaction, depending

on their distance apart) brings about a new "magnetic" spectrum which is

superposed on the ordinary dielectric spectrum.

This new spectrum lies entirely within a finite interval of energy, of the

order of magnitude of the energy of interaction of the magnetic moments of

all the atoms of the body, lying at fixed distances apart at the crystal lattice

sites; the amount of this energy per atom may be from tenths of a degree to

hundreds of degrees. In this respect the magnetic energy spectrum is comple-

tely different from the ordinary spectra, which, owing to the presence of the

kinetic energy of the particles, extend to arbitrarily high energy values.

Because of this property we can consider an interval of temperatures large

compared with the maximum possible interval of energy values per atom.

The free energy -Fmag pertaining to the magnetic part of the spectrum is cal-

culated in exactly the same way as in §32.

Let En be the energy levels of the system of interacting moments. Then

we have for the required partition function

•^mag Z^
n

Here, as in §32, a formal expansion in powers of the quantity EJT, which is

not in general small, will give (after taking logarithms) an expansion in terms

of a small quantity ~EJNT, where N is the number of atoms. The total num-

ber of levels in the spectrum under consideration is finite and equal to the

number of all possible combinations of orientations of the atomic moments;

for example, if all the moments are equal, this number is g
N

, where g is the

number of possible orientations of an individual moment relative to the lattice.

Denoting by a bar here the ordinary arithmetic mean, we can write Zmag as

^mag = & |1 —Y n ~^2T2 n '*

Finally, taking logarithms and again expanding in series with the same accu-

racy, we obtain for the free energy the expression

-''mag •* *°§ -^mag

Hence the entropy is

= -NT\ogg+En-^{En-Eaf. (71.1)

-N\ogg-W2 {En-En)\ (71.2)



§71 Negative Temperatures 213

the energy

£mag = En~(En-E&, (71.3)

and the specific heat

1

y«2^rnag — 7f*[( n n ) ' v'1-t)

We shall regard the atomic magnetic moments fixed at the lattice sites and

interacting with one another as a single isolated system, ignoring its interac-

tion with the lattice vibrations, which is usually very weak. Formulae (71.1)-

(71.4) determine the thermodynamic quantities for this system at high tem-

peratures.

The proof given in §10 that the temperature is positive was based on the

condition for the system to be stable with respect to the occurrence of internal

macroscopic motions within it. But the system of moments here considered is

by its nature incapable of macroscopic motion, and so the previous arguments

do not apply to it ; nor does the proof based on the normalisation condition

for the Gibbs distribution (§36), since in the present case the system has only

a finite number of energy levels, themselves finite, and so the normalisation

sum converges for any value of T.

Thus we have the interesting result that the system of interacting moments
may have either a positive or a negative temperature. Let us examine the prop-

erties of the system at various temperatures.

At T = 0, the system is in its lowest quantum state, and its entropy is zero.

As the temperature increases, the energy and entropy of the system increase

monotonically. At T = <=°, the energy is E~n and the entropy reaches its maxi-

mum value N logg; these values correspond to a distribution with equal

probability over all quantum states of the system, which is the limit of the

Gibbs distribution as T -* °°.

The temperature T = — <=° is physically identical with T = °°; the two

values give the same distribution and the same values of the thermodynamic

quantities for the system. A further increase in the energy of the system corre-

sponds to an increase in the temperature from T = — <=>, with decreasing abso-

lute magnitude since the temperature is negative. The entropy decreases mono-
tonically (Fig. 9).* Finally, at T = — the energy reaches its greatest value

and the entropy returns to zero, the system then being in its highest quantum
state.

Thus the region of negative temperatures lies not "below absolute zero"

but "above infinity". In this sense we can say that negative temperatures are

"higher" than positive ones. This is in accordance with the fact that, when a

t The curve S = S(E) is symmetrical near its maximum, but in general need not be sym-
metrical far from the maximum.
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system at a negative temperature interacts with one at a positive temperature

(i.e. the lattice vibrations), energy must pass from the former to the latter

system; this is easily seen by the same method as that used in §9 to discuss the

exchange of energy between bodies at different temperatures.

States with negative temperature can be attained in practice in a paramag-

netic system of nuclear moments in a crystal where the relaxation time H for

the interaction between nuclear spins is very small compared with the relaxa-

tion time t\ for the spin-lattice interaction (E. M. Purcell and R. V. Pound
1951). Let the crystal be magnetised in a strong magnetic field, and let the

direction of the field then be reversed so quickly that the spins "cannot fol-

low it". The system is thus in a non-equilibrium state, with an energy which

is obviously higher thanRn . During a time of the order of t2 , the system reaches

an equilibrium state with the same energy. If the field is then adiabatically

removed, the system remains in the equilibrium state, which will clearly

have a negative temperature. The subsequent exchange of energy between the

spin system and the lattice, whereby their temperatures are equalised, takes

place in a time of the order of t±.



CHAPTER VII

NON-IDEAL GASES

§72. Deviations of gases from the ideal state

The equation of state of an ideal gas can often be applied to actual gases with

sufficient accuracy. This approximation may, however, be inadequate, and it

is then necessary to take account of the deviations of an actual gas from the

ideal state which result from the interaction between its component mole-

cules.

Here we shall do this on the assumption that the gas is still so rarefied that

triple, quadruple etc. collisions between molecules may be neglected, and their

interaction may be assumed to occur only through binary collisions.

To simplify the formulae, let us first consider a monatomic actual gas.

The motion of its particles may be treated classically, so that its energy has

the form

E^ =
iSk +u- (72i)

where the first term is the kinetic energy of the N atoms of the gas, and U is

the energy of their mutual interaction. In a monatomic gas, U is a function

only of the distances between the atoms. The partition function fe~Elp,9)ITdr
becomes the product of the integral over the momenta of the atoms and the

integral over their co-ordinates. The latter integral is

H e-uiT dVl ... dJ N̂>

where the integration over each dVa = dxa dya dza is taken over the whole

volume V occupied by the gas. For an ideal gas, U = 0, and this integral

would be simply VN. It is therefore clear that, on calculating the free energy

from the general formula (31.5), we obtain

F = i^-Tlog -^ f . . . f e-vir dV1 ... dVN, (72.2)

where FlA is the free energy of an ideal gas.

Adding and subtracting unity in the integrand and using the fact that

/ d Vi . . . dVN = VN, we can rewrite formula (72.2) as

F = FiA-Tlog \4w [ • f
(e-viT-\) dV1 ... dK^+ ll. (72.3)W-J

215
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For the subsequent calculations we make use of the following formal

device. Let us suppose that the gas is not only sufficiently rarefied but also so

small in quantity that not more than one pair of atoms may be assumed to be

colliding in the gas at any one time. This assumption does not affect the gen-

erality of the resulting formulae, since we know from the additivity of the free

energy that it must have the form F = Nf(T, V/N) (see §24), and therefore

the formulae deduced for a small quantity of gas are necessarily valid for any

quantity.

The interaction between atoms is very small except when the two atoms

concerned are very close together, i.e. are almost colliding. The integrand in

(72.3) is therefore appreciably different from zero only when some pair of

atoms are very close together. According to the above assumption, not

more than one pair of atoms can satisfy this condition at any one time, and

this pair can be selected from N atoms in %N(N— 1) ways. Consequently, the

integral in (72.3) may be written

H$N(N-l) ... (e- u»lT-l) dKi . . . dV,N>

where £/i2 is the energy of interaction of the two atoms (it does not matter

which two, as they are all identical); C/12 depends only on the co-ordinates of

two atoms, and we can therefore integrate over the remaining co-ordinates,

obtaining VN~ 2
. We can also, of course, write N2 instead of N(N— 1), since

N is very large; substituting the resulting expression in (72.3) in place of the

integral, and using the fact that log (1 +x) » x for x« 1, we have 1
"

where dFi dV2 is the product of differentials of the co-ordinates of the two

atoms.

But t/12 is a function only of the distance between the two atoms, i.e. of

the differences of their co-ordinates. Thus, if the co-ordinates of the two

atoms are expressed in terms of the co-ordinates of their centre of mass and

their relative co-ordinates, C/i2 will depend only on the latter (the product of

whose differentials will be denoted by dV). We can therefore integrate with

respect to the co-ordinates of the centre of mass, again obtaining the volume

V. The final result is

F = Fia + N*TB(T)/ V, (72.4)

where

B(T) = \ [(\-e- u"l T) dV. (72.5)fa-

t We shall see later that the first term in the argument of the logarithm in (72.3) is pro-

portional to N2/V. The expansion in question therefore depends on precisely the assump-

tion made above, that not only the density N/V but also the quantity of the gas is small.
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From this we find the pressure P = — dF/d V:

since Pid
= NT/V. Equation (72.6) is the equation of state of the gas in the

approximation considered.

As we know (§15), the changes in the free energy and the thermodynamic

potential resulting from small changes in the external conditions or proper-

ties of a body are equal, one being taken at constant volume and the other at

constant pressure.

If we regard the deviation of a gas from the ideal state as such a change, we

can change directly to & from (72.4). To do so, we need only express the

volume in terms of the pressure in (72.4) by means of the equation of state for

an ideal gas, obtaining

& =
i6 +NBP. (72.7)

The volume may hence be expressed as a function of the pressure

:

NT
V = -J-+NB. (72.8)

The whole of the foregoing discussion applies to monatomic gases. The

same formulae remain valid, however, for polyatomic gases also. In this case

the potential energy of interaction of the molecules depends not only on their

distance apart but also on their relative orientation. If (as almost always hap-

pens) the rotation of the molecules may be treated classically, we can say

that £/i2 is a function of the co-ordinates of the centres of mass of the mole-

cules and of rotational co-ordinates (angles) which define the spatial orienta-

tion of the molecules. It is easy to see that the only difference from the case of

a monatomic gas amounts to the fact that dVa must be taken as the product

of the differentials of all these co-ordinates of the molecule. But the rotational

co-ordinates can always be so chosen that the integral fdVa is again equal

to the volume V of the gas. For the integration over the co-ordinates of the

centre of mass gives this volume V, while the integration over angles gives a

constant, and the angles can always be normalised so that this constant is

unity. Thus all the formulae derived in this section have the same form for

polyatomic gases, the only difference being that in (72.5) dV is now the pro-

duct of the differentials of co-ordinates defining both the distance between

two molecules and their relative orientation.*

All the above formulae are meaningful, of course, only if the integral (72.5)

converges. For this to be so it is certainly necessary that the forces of interaction

t If the particles in the gas have spin, the form of the function U1Z depends in general on
the orientation of the spins. In that case a summation over spin orientations must be added

to the integration with respect to dV.
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between the molecules should decrease sufficiently rapidly with increasing

distance. If C/i2 decreases at large distances according to a power law~r~n
,

we must havef n > 3.

If this condition is not satisfied, a gas consisting of identical particles can

not exist as a homogeneous body. In this case every region of matter will be

subject to very large forces exerted by distant parts of the gas. The regions

near to and far from the boundary of the volume occupied by the gas will

therefore be in quite different conditions, and so the gas is no longer homo-
geneous.

Fig. 10

For monatomic gases the function Ux^if) has the form shown in Fig. 10;

the abscissa is the distance r between the atoms. At small distances, Uu in-

creases with decreasing distance, corresponding to repulsive forces between the

atoms; beginning approximately at the place where the curve crosses the

abscissa axis, it rises steeply, so that U\2 rapidly becomes very large, corre-

sponding to the mutual "impenetrability" of the atoms (for which reason the

distance r is sometimes called the "radius" of the atom). At large distances,

Un increases slowly, approaching zero asymptotically. The increase of Un
with distance corresponds to a mutual attraction of the atoms. The minimum

of t/12 corresponds to a "stable" equilibrium. The absolute value Uq of the

energy at this point is usually small, being of the order of the critical tempera-

ture of the substance.

For a polyatomic gas, the interaction energy has a similar form, but it

cannot, of course, be represented by the curve in Fig. 10, since it is a function

of a large number of variables.

This information as to the nature of the function U\% is sufficient to deter-

mine the sign of B(T) in the limiting cases of high and low temperatures.

t This condition is always satisfied for atomic and molecular gases: the forces of inter-

action between electrically neutral atoms or molecules (including dipoles), when averaged

over the relative orientations of the particles, decrease at large distances as Ult ~ 1/r6 ; see

Quantum Mechanics, §89.
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At high temperatures (r» Uo) we have \Uit\/T<s. 1 throughout the region

r > 2r , and the integrand in B(T) (72.5) is almost zero. Thus the value of

the integral is mainly determined by the region r < 2r , where Uu/T is large

and positive; in this region, therefore, the integrand is positive, and so the

integral itself is positive. Thus B(T) is positive at high temperatures.

At low temperatures (r«: Uo), on the other hand, the region r > 2ro is

the important one in the integral, and in this region U-njT is large and nega-

tive. At sufficiently low temperatures, therefore, B(T) must be negative, and

its temperature dependence is essentially given by the exponential factor

-eu°IT
.

Being positive at high temperatures and negative at low temperatures,

B(T) must pass through zero at some temperature. 1
"

Finally, let us consider a Joule-Thomson process involving a non-ideal gas.

The variation of temperature during the process is given by the derivative

Mw~ CP [

TMp T
jdV\

(72.9)

see (18.2). For an ideal gas this derivative is of course zero, but for a gas with

the equation of state (72.8) we have

(dT

W)w Cp (

dB
T
df-

B
)

=
2Cr)=

p̂ \[
e
- U"' T

(

l-^)- 1

}

dV
- ™

As in the discussion of B(T), it is easy to see that at high temperatures (dT/dP)w
< 0, i.e. when the gas goes from a higher to a lower pressure in a Joule-

Thomson process its temperature rises ; at low temperatures, (dT/dP)w > 0,

i.e. the gas temperature falls with the pressure. At a definite temperature for

each gas, called the inversion point, the Joule-Thomson effect must therefore

change sign.*

PROBLEMS
Problem 1. Determine B(T) for a gas whose particles repel one another according to

U12 = a/r" (« > 3).

Solution. In (72.5) we put dV = 4nr2 dr and integrate by parts with respect to r from
to <*>; the substitution ar~* = x then reduces the integral to a gamma function:

w . ?(
«)», (i _l)

t The temperature TB for which B(TB) = is called the Boyle point. If PV/T is plotted

against P for various given T, the isotherm T = TB has a horizontal tangent as P -* 0,

and separates isotherms with positive and negative initial slopes; all the isotherms start

from the point PV/T = 1, P = 0.

t It will be recalled that we are considering a gas which is only slightly non-ideal, so that
the pressure is relatively low. The result that the inversion point is independent of pressure
is valid only in this approximation; cf. §74, Problem 4.
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Problem 2. The fugacity of a gas is the pressure P* which it would have for given values

of the temperature and chemical potential if so rarefied that it could be regarded as an
ideal gas. Determine the fugacity of a gas with the thermodynamic potential (72.7).

Solution. The chemical potential of the gas is (with fiid
given by (42.6))

ft = fiid+BP = T log P+y(T)+BP.

Equating this to T log P* + %{T) by the definition of the fugacity, we have to the same ac-

curacy as that of (72.7)

§73. Expansion in powers of the density

The equation of state (72.6) derived in §72 consists essentially of the first

two terms in an expansion of the pressure in powers of l/V:

,^(1+M+^+ ...). (73.1)

The first term in the expansion corresponds to an ideal gas, i.e. no interaction

between molecules. The second term is obtaining by taking into account the

interaction between pairs of molecules, and the subsequent terms must involve

the interactions between groups of three, four etc. molecules. 1
"

The coefficients B, C,. . . in the expansion (73.1) are called the second,

third etc. virial coefficients. To determine these quantities, it is convenient to

begin by calculating the potential Q, not the free energy. Let us again consider

a monatomic gas, and start from the general formula (35.5), which for a gas

consisting of identical particles becomes

e-OIT = £ 1. e»NIT f e-EN(p, q)IT^ (73 .2)
N=oN-

J

The factor 1/iV! is included and the integration is then taken simply over the

whole phase space of the system ofTV particles; cf. (31.7).

In the successive terms of the sum over N, the energy EN(p, q) has the

following forms. For N = 0, of course, E (p, q) == 0. For N = 1, it is simply

the kinetic energy of one atom:

Ei(p, q) = p2/2m.

ForN = 2 it consists of the kinetic energy of the two atoms and the energy of

their interaction

:

t The dimensionless small parameter with respect to which the expansion is made is

actually the ratio NvJ V of the "volume" v of one molecule to the gas volume per molecule

V/N.
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Similarly,

where C/123 is the interaction energy of three atoms (which in general is not

equal to the sum Un+ U13+ U23), and so on.

We substitute these expressions in (73.2) and use the notation

1 =

We shall see below that this is simply equal to Pia/T, where Pid is the pressure

of an ideal gas for given Tand V. We obtain

Q= -Tlogll +£V+^{L-u»l T dV1 dV2+

+ || ((e- u^l T dV1 dV2 dV3 +...\.

Each of the U12 , U123, ... is a function only of the distances between the

atoms; hence, by using the relative co-ordinates of the atoms (relative to the

first atom, say), we reduce the multiplicity of the integrals by one, with a

further factor V entering:

Q= -PV= -T\ogil+£V+^(e- u»lT dV2+

+^f (T
e_twT dFzdF3+ •••}•

Finally, we expand this expression in powers of |; the resulting series can be

written as

n=l

where

P = Tj\^en
,

(73.4)
n=i«!

Ji = 1, /2 = f(e-^»/ T-l)dK, f

(73.5)
J* = fj (e-UxH/T_ e-[7lt/T_ e-i7lt/T_ e -i7M/r+2)dF2 dK3 ,

etc. The structure of the integrals Jn is evident; the integrand in Jn is appreci-

ably different from zero only if n atoms are close together, i.e. in a collision

of n atoms.

Differentiating (73.4) with respect to p, we obtain the number of particles

in the gas, since N = —(dQJd/x) T v = K(8P/9/-i)
r> v . Bearing in mind that

by definition (73.3) 6|/8jU = £/T, we have

"-rJU^iT*"- (73 -6)
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The two equations (73.4) and (73.6) give in parametric form (with parame-
ter £) the relation between P, V and T, i.e. the equation of state of the gas.

Eliminating £, we can obtain the equation of state in the form of the series

(73.1) with any desired number of terms.

*

§74. Van der Waals' formula

In gases the interaction between molecules is very weak. As this interaction

increases, the properties of the gas differ more and more from those of ideal

gases, and finally the gas condenses into a liquid. In the latter, the interaction

between molecules is strong, and the properties of this interaction (and there-

fore those of the liquid) depend considerably on the particular liquid con-

cerned. For this reason it is, as already mentioned, impossible to derive any
general formulae giving a quantitative description of the properties of aliq uid.

We can, however, find an interpolation formula which gives a qualitative

description of the transition between the liquid and gaseous states. This for-

mula must give the correct results in the two limiting cases. For rarefied gases

it must become the formulae valid for ideal gases. When the density increases

and the gas approaches the liquid state, it must take account of the finite

compressibility of the substance. Such a formula will then give a qualitative

description of the behaviour of the gas in the intermediate range also.

To derive such a formula, let us examine in more detail the deviations from

the ideal state at high temperatures. As in the preceding sections, we shall

first consider a monatomic gas ; by the same arguments as used previously, all

the resulting formulae will be equally applicable to polyatomic gases.

The type of interaction between gas atoms described in §72 (Fig. 10) en-

ables us to determine the form of the leading terms in the expansion of B(T)

in inverse powers of the temperature; here we shall assume that the ratio

Uo/T is small:

U /T<szl. (74.1)

Since Un depends only on the distance r between the atoms, we write in

the integral (72.5) dV = 4nr2 dr. Dividing the range of integration with re-

spect to r into two parts, we write

2r oo

f(l-e- u»/ T)dF= An
|

(l-e-^/ T)r2 dr+4;r f(l-e-^/ r)r2 dr.

2r

t In the first approximation, P = T£,N = K|, whence P = NT/V = P
ld

. In the second

approximation, P= 7?(l+^/2|), N= V£(l + J2£); eliminating £ from these equations

(with the same accuracy), we have

_ NT N 2T

in agreement with (72.6).
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For values of r between and 2r , the potential energy U12 is in general very

large. In the first integral we can therefore neglect e~ UltlT in comparison

with unity. Then this integral is equal to lb, where b = 16?rr 8
/3. If we regard

r as the "radius" of the atom, b is four times its "volume" (for polyatomic

gases, of course, the constant b is not equal to four times the "volume" of a

molecule).

In the second integral, U12 nowhere exceeds J7o in absolute magnitude

(Fig. 10). Thus — Uit/T is always small compared with unity, since, even

when U12 = -U ,
- U12/T = U /T^ 1. We can therefore expand *-c7"/T in

powers of U12/T and take only the first two terms. The second integral then

becomes

H— | 47tU12r* dr.

2r

Since Ui2 is negative throughout the range of integration, the integral itself

is negative, and we write it as —2a/T, where a is a positive constant.

Thus we find

B(T) = b-a/T, (74.2)

and substitution of this in (72.4) gives for the free energy of the gas

F = F^+N^iTb-a)^. (74.3)

Substitution in (72.7) gives for the thermodynamic potential

= &id +NP(b-alT). (74.4)

The desired interpolation formula can be obtained from (74.3), which

itself does not satisfy the necessary conditions, since it does not take account

of the finite compressibility of the substance. In (74.3) we substitute the

expression for Fi& from (42.4) ; this gives

F = Nf(T)-NT\og (e/N)-NT(\og V-Nb/V)-N2a/V. (74.5)

In deriving formula (72.4) for the free energy of a gas we assumed that the

gas, though not sufficiently rarefied to be regarded as an ideal gas, never-

theless occupies such a large volume that we can neglect triple and higher-

order collisions between molecules, so that the distances between molecules

are in general considerably larger than their dimensions. We may say that the

gas volume Kis always considerably greater than Nb, i.e. NbjV <z 1; using

also the fact that log (1 +x) s* x for x «s= 1, we find

log (K-M>) = log V+\og{\-MIV)
= log V-NbjV.

Hence (74.5) may be written

F = Nf(T)-NT log [e(V-Nb)/N]-N*a/V

= Fid-NT log (1 -Nb/ V)-N2a/ V. (74.6)
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In this form the conditions stated above are satisfied, since when Fis large

the formula for the free energy of an ideal gas is obtained, and when Fis small
the formula shows that the gas cannot be indefinitely compressed, since the

argument of the logarithm becomes negative when V < Nb.

If the free energy is known, we can determine the gas pressure:

NT N2ap = - dF/dv = —

—

——

-

1 V-Nb V2

or

N2d/ n N2a\
(V-Nb) = NT. (74.7)

This is the required interpolation formula for the equation of state of an
actual gas. It is called van der Waals'' equation.

Van der Waals' formula is, of course, only one of an infinity of possible

interpolation formulae which satisfy the requirements stated, and there is no
physical reason to select any one of them; van der Waals' formula is merely

the simplest and most convenient.
1-

From (74.6) we can find the entropy of the gas

:

S = Sid+N log (1 -Nb/V), (74.8)

and thence the energyE = F+ TS:

E = Ei&-N2a/V. (74.9)

Thus the specific heat Cv
= (dE/dT)v of a van der Waals gas is equal to that

of an ideal gas; it depends only on the temperature and, in particular, may be

constant. The specific heat Cp is easily seen (cf. Problem 1) to depend not only

on the temperature but also on the volume, and so can not be constant.

The second term in (74.9) corresponds to the energy of interaction of the

gas molecules; it is, of course, negative, since on average the forces between

molecules are attractive.

PROBLEMS
Problem 1. Find Cp — Cv for a non-ideal gas described by van der Waals' formula.

Solution. Using formula (16.10) and van der Waals' equation, we find

C-C = N
p

' l-2Na(V-Nb) 2JTV3
'

Problem 2. Find the equation of an adiabatic process for a van der Waals gas of con-

stant specific heat Cv .

Solution. Substituting in (74.8) S
id
= Nlog V+Ncv log T (omitting unimportant

constants) and putting S = constant, we obtain the relation (V—Nbyi** = constant. This
differs from the corresponding equation for an ideal gas in that V is replaced by V—Nb.

1" In actual applications of this formula, the values of the constants a and b must be

chosen so as to give the best agreement with experiment. The constant b cannot then be

regarded as four times the "molecular volume", even for a monatomic gas.
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Problem 3. For a gas of the same kind as in Problem 2, find the change in temperature

on expansion into a vacuum from volume V± to V2 .

Solution. In an expansion into a vacuum, the energy of the gas remains constant.

Thus formula (74.9), with Eld
= NcvT, gives

T
*

Tl ~ cv \Vt Vj-

Problem 4. For a van der Waals gas find the temperature dependence of the inversion

point for the Joule-Thomson effect.

Solution. The inversion point is determined by the equation (dT/dV)P = T/V (see

(72.9)). Substitution of Tfrom (74.7) leads to an equation which has to be solved simultane-

ously with (74.7). Algebraic calculation gives the following dependence of the inversion

point on pressure

:

rinv
= ^(2±V(l-362P/a)) 2

.

For any given pressure P < a/362 there are two inversion points, between which the deriva-

tive (dT/dP)w is positive, while outside this temperature interval it is negative. When

P > a/362 there are no inversion points and (6778PV -= everywhere.t

§75. Completely ionised gases

The method given above for calculating the thermodynamic quantities for

a non-ideal gas is certainly inapplicable to a gas consisting of charged parti-

cles with Coulomb interaction, since the integrals which appear in the formu-

lae then diverge. Such gases must therefore be treated separately.

Let us consider a completely ionised gas or plasma. The charges on its

particles will be denoted by zae, where the suffix a refers to the different kinds

of ion; e is the unit charge and the za are positive or negative integers. Also,

let n^ be the number of ions of the ath kind per unit volume of the gas. The

gas as a whole is, of course, electrically neutral, so that

5>«»ao
= 0. (75.1)

a

We shall suppose that the gas does not deviate greatly from the ideal state.

For this to be so it is certainly necessary that the mean energy of the Coulomb

interaction between two ions (~(ze)2
/r, where r ~ n~ lls

is the mean distance

between ions) should be small compared with the mean kinetic energy of the

ions (~r)- Thus we must nave (^)2"1/3 <zToi

n « (r/z2*2)
3

. (75.2)

To calculate the thermodynamic quantities for such a gas we must first

determine the change £Coui m tne energy of the gas (as compared with the

energy of an ideal gas) due to the Coulomb interaction of the particles. As we

t The upper inversion point as P -* (Tinv = 2a/6) corresponds to the case considered

at the end of §72. The lower inversion point for small P may not occur in a gas owing to its

condensation into a liquid.
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know from electrostatics, the electrical interaction energy of a system of
charged particles can be written as half the sum of the products of each charge
and the potential of the field at the position of that charge due to all the other

charges. In the present case

^Coul = ^'iZ^aWaO^o. (75.3)
a

where </>a is the potential of the field acting on an ion of the ath kind due to

the other charges. To calculate these potentials we proceed as follows.*

Each ion creates around itself a non-uniformly charged ion cloud, which on
average is spherically symmetrical. In other words, if we select any particular

ion in the gas and consider the density of distribution of the other ions rela-

tive to that ion, this density will depend only on the distance r from the centre.

Let the density of distribution of ions (of the ath kind) in this ion cloud be

denoted by na . The potential energy of each ion of the ath kind in the electric

field around the ion considered is zae<j>, where <f> is the potential of this field.

Hence Boltzmann's formula (38.6) gives

"a = nwe-*'°*lT. (75.4)

The constant coefficient is put equal to n^, since at a large distance from the

centre (where <£ -* 0) the density of the ion cloud must become equal to the

mean ion density in the gas.

The potential
<f>

of the field in the ion cloud is related to the charge density

in it (equal to J] ezjij by the electrostatic Poisson's equation:

A(j)
= -47re£zawa . (75.5)

a

Formulae (75.4) and (75.5) together give the equations of the "self-consistent"

electric field of the electrons and ions.

With the above assumption that the interaction of the ions is relatively

weak, the energy eza<j> is small in comparison with T, and formula (75.4) may
be written in the approximate form

"a = "aO-^0. (75.6)

Substituting this in equation (75.5) and using the condition (75.1) for the

gas to be neutral as a whole, we obtain

A<£-*2 = o, (75.7)

where

4jt£2

*2 = ^-E"aoZa2
. (75.8)

•* a

The quantity x has the dimensions of reciprocal length.

t This method was used by Debye and HCckel to calculate the thermodynamic quanti-

ties for strong electrolytes (1923).
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The spherically symmetric solution of equation (75.7) is 4> = constantX

e~*r/r. In the immediate neighbourhood of the centre, the field must become

the purely Coulomb field of the charge considered; this charge will be denot-

ed by zbe. In other words, for sufficiently small r we must have $ ^ ezjr.

This shows that the constant must be taken as zbe, and so the required poten-

tial distribution is given by

<t>
= ezhe~^lr. (75.9)

Hence we see, incidentally, that the field becomes very small at distances large

compared with 1/x. The length 1/x can therefore be regarded as determining

the dimensions of the ion cloud due to a given ion; it is also called the Debye-

Huckel length. All the calculations given here assume, of course, that this

length is large in comparison with the mean distances between ions. This con-

dition is clearly identical with (75.2).

Expanding the potential (75.9) in series for small xr, we have

jl
ezb

The terms omitted vanish when r = 0. The first term is the Coulomb field of

the ion itself; the second term is clearly the potential produced by all the other

ions in the "cloud" at the point occupied by the ion considered, and is the

quantity to be substituted in formula (75.3) : <j>a = —ezax.

Thus we have the following expression for the "Coulomb part" of the

plasma energy:

^coui = ~W^ I Wo* = ~ Ve* Ij; (Z naoza*)W (75.10)

or, in terms of the total numbers of different ions in the gas Na
= na0 V,

*coui= -«• j^y(ZNaza^. (75.11)

This energy is inversely proportional to the square root of the temperature

and to that of the volume of the gas.

Integrating the thermodynamic relation E/T2 = -(d/dT)(F/T), we can

deduce from ECovil
the corresponding change in the free energy

:

F = FiA
~ IlL (£ JW)3/2; (75.12)

the constant of integration must be taken as zero, since when T -* <» we

must have F = Fid . Hence the pressure is

?4l^-.4 fe&NaZa2?12
. (75.13)

The thermodynamic potential is obtained from F in the same way as in §72
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(i.e. by regarding the second term in (75.12) as a small correction to F
ld):

2e3 l TtP \ 1/2

9 =
^-^(w) (?M'2

- (7514)

In the foregoing theory it is assumed that the plasma is far from degeneracy,

i.e. obeys Boltzmann statistics. It is possible in principle for conditions to

occur such that the electron component of the gas is already degenerate

while at the same time the interaction between particles in the gas is unim-

portant, i.e. the gas is "almost ideal". It has been mentioned at the end of

§56 that such a situation occurs at very high densities of a degenerate gas

;

the "gas of nuclei" may still be far from degeneracy, owing to the large mass

of the nuclei. In this case the above calculations are inapplicable. At tempera-

tures of the order of the degeneracy temperature the principal contribution

to the correction terms in the thermodynamic quantities (as compared with

those of an ideal gas) in a degenerate plasma comes from the exchange part

of the electrical interaction of the electrons, which in the classical case is

unimportant and which we have ignored. Moreover, in calculating the "self-

consistent" interaction of the electrons and ions the motion of the electrons

can no longer be regarded as quasi-classical. 1
"

§76. The method of correlation functions

The advantage of the Debye-Hiickel method described in §75 lies in its

simplicity and physical clarity. Its basic drawback, however, is that it cannot

be generalised to calculate further approximations with respect to the concen-

tration. We shall therefore also give a brief description of another method

(proposed by N. N. Bogolyubov, 1946), which, though more complicated,

allows in principle the calculation of further terms in the expansions of the

thermodynamic quantities.

This method is based on a consideration of what are called correlation

functions between the simultaneous positions of several particles at given

points in space. The simplest and most important of these is the binary corre-

lation function wab , which is proportional to the probability of finding two

particles (ions) simultaneously at given points ra and r6 ; the ions a and b may

be of either the same or different kinds. Because the gas is isotropic and homo-

geneous, this function of course depends only on r = |r
6
— rj. We choose the

t The calculations for this case have been carried out by A. A. Vedenov, Soviet Physics

JETP (36) 9, 446, 1959.

At sufficiently low temperatures the ordered arrangement of the nuclei in a "crystal

lattice" becomes thermodynamically favourable rather than their random motion in the

gas. Under these conditions the corrections due to the interaction between the electrons and

the nuclei are of a different kind; see the second footnote to §108.
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normalisation coefficient in the function w^ such that this function tends to

unity as r — «>. Then
J

w^dVg^ dVb
= V2

.

If the function wab is known, the required energy ECoul can be obtained by

integration, using the obvious formula

'Coul = 2F* I NaNb
f \

Ua^abdVa dVb , (76.1)

where the summation is over all the kinds of ions, and u^ is the Coulomb

interaction energy of a pair of ions at distance r.

According to the Gibbs distribution formula, the function wab is given by

*ab = y^T f exp
j

^-^id-fr
j
dVi dy2 ^^^ (76 .2)

where U is the Coulomb interaction energy of all the ions, and the integration

is over the co-ordinates of all the ions except the two considered. For an ap-

proximate calculation of this integral we proceed as follows.

We differentiate equation (76.2) with respect to the co-ordinates of ion b:

"9r7- -t- &;-Tv^ Nc
)*b~

ahc ct ( }

where the summation in the last term is over all the kinds of ions, and wabc is

the ternary correlation function, defined by

1

w„ {^pEjexp
\

±2 \dV1 dV2 ...dVN_N-3vabc — yN-3

analogously to (76.2).

Assuming the gas sufficiently rarefied and considering only the first-order

terms, we can express the ternary correlation function in terms of binary corre-

lations: neglecting the possibility that all three ions are close together, we
have wabc

= w^w^w^. In the same approximation we can suppose that even

the pairs of particles are not so close together that the wab are appreciably

different from unity. We define the small quantities

(oab = wab-l (76.4)

and write

W 6c = 0)ab+ CObc+ COac+l, (76.5)

neglecting the higher powers of the coab .

When this expression is substituted in the integral on the right-hand side

of (76.3), only the term in coac remains; the others give zero identically, be-

cause of the isotropy of the gas. In the first term on the right of (76.3) it is

sufficient to put wab = 1. Thus

3rh

_ 1 3"a6 1 ^ v f 3"6c AV
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We now take the divergence of both sides of this equation, using the facts

that uab = z
azbe

2
/r, r = r

6
—

r

a , and the well-known formula A(l/r) =
— 4nd(T). The integration is then trivial because of the presence of the delta

function, and we have

Acoab(r) = ^^- <5(r)+^£ Nczccoac(r). (76.6)

c

The solution of this system of equations can be sought in the form

coab(r) = zazbw(r), (76.7)

whereby they are reduced to a single equation

Atip^ 47re2

Aco(r) =— 5(r)+wpcz>(r). (76.8)

c

This final equation has the same form as equation (75.7) in Debye and

Huckel's method ; the term containing the delta function in (76.8) corresponds

to the boundary condition as r -* imposed on the function (f>(r) in (75.7).

It is easy to see that this gives the same result as before for the energyECouV
In the next approximation the calculations become more laborious. In par-

ticular, the assumption (76.5) is now insufficient, and ternary correlations

which do not reduce to binary ones must be introduced. For these we obtain

an equation analogous to (76.3) but involving quaternary correlations; in this

(the second) approximation the latter reduce to ternary ones. 1
"

§77. Calculation of the virial coefficient in quantum mechanics

In calculating the virial coefficients in §§72-74 we have used classical sta-

tistics, as is practically always justifiable. There is, however, methodological

interest in the problem of calculating these coefficients in the quantum case

;

and such a case may actually occur for helium at sufficiently low temperatures.

We shall show how the second virial coefficient may be calculated with allow-

ance for the quantisation of the binary interaction of the gas particles

(Beth and Uhlenbeck 1937). We shall consider a monatomic gas whose

atoms have no electronic angular momentum ; and having in mind the case of

helium, we shall also suppose for definiteness that the nuclei of the atoms have

no spin and that the atoms obey Bose statistics.

In the approximation concerned, it is sufficient to retain only the first three

terms in the sum over N in formula (35.3), which determines the potential Q:

q= -riog {i+ YJ
e(l*- Ein)IT+ Yd

*2"~ Et*),T
}

• C77 - 1 )

n n

t The terras of next higher order in the thermodynamic quantities for a plasma have in

fact been calculated (using a different method) by A. A. Vedenov and A. I. Larkin,

Soviet Physics JETP (36) 9, 806, 1959.
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Here the Eln are the energy levels of a single atom, and the E2n are those of

a system of two interacting atoms. Our object is to calculate only those correc-

tion terms in the thermodynamic quantities which are due to the direct inter-

action of the atoms; the corrections due to quantum exchange effects exist

even in an ideal gas and are given by formula (55.15), according to which the

"exchange" part of the second virial coefficient is (in the case of Bose statis-

tics)

*exch = -iWmr)3 '2
. (77.2)

Thus the problem reduces to the calculation of

Z (2) = Ve(2"-W T
,

n

and from this must be subtracted the expression which would be obtained

for two non-interacting atoms.

The energy levels E2n consist of the kinetic energy of the motion of the centre

of mass of the two atoms (p
2/4m, where p is the momentum of that motion,

and m the mass of an atom) and the energy of their relative motion. Let the

latter be denoted by e; this component is given by the energy levels of a par-

ticle of mass \m (the reduced mass of the two atoms) moving in a central

field f/i2(r), where Ui2 is the potential energy of the interaction of the atoms.

The motion of the centre of mass is always quasi-classical; integrating over its

co-ordinates and momenta in the usual manner (cf. §42), we obtain

Z<2) = Ve^l T(mT/7th2fl2Y e
~elT

'

If we denote by Zint the part of Z<2) which depends on the interaction of

the particles, we can writeQ in the form

Q = Qi6-TVe^l T(mT/7in2fl2Zint .

Regarding the second term as a small correction to the first term, and express-

ing it in terms of T, V and N by means of formula (45.5) for the chemical

potential of an ideal gas, we obtain for the free energy the expression

Differentiation with respect to V gives the pressure, and the required part of

the virial coefficient that is due to the interaction of the atoms is

Bint(T) = -8(nfi*/mT)™Zint . (77.3)

The spectrum of energy levels e consists of a discrete spectrum of negative

values (corresponding to a finite relative motion of the atoms) and a conti-

nuous spectrum of positive values (infinite motion). We denote the former

by en ; the latter may be written in the form p2/m, where p is the momentum
of the relative motion of the atoms when the distance between them has be-

come very large. The whole of the sum £V £» ,/T over the discrete spectrum
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appears in Z
jnt ; from the integral over the continuous spectrum we must sep-

arate the part corresponding to the free motion of non-interacting particles.

To do this we proceed as follows.

At large distances r, the wave function of a stationary state with orbital

angular momentum / and positive energy p2/m has the asymptotic formf

constant . (p , , _, \
y = Xsm tjr-ffo+dA ,

where the phase shifts d
l
= <5j(/j) depend on the specific form of the field

Un(r). Let us formally suppose that the range of variation of the distance r

is bounded by some very large but finite value R. Then the momentum/? can

take only a discrete series of values given by the boundary condition that

xp = for r = R:

-jrR— Y^71+ &l
~ S7l

>

where s is an integer. For large R these values are very close together and the

summation in

y e-p
!lmT

P

may be replaced by an integration. To do so, we multiply the summand (for

a given I) by

- — (* *Q\d
n \h dp

J

and integrate over p ; the result must then be multiplied by 2/4- 1 (the degree

of degeneracy with respect to orientations of the orbital angular momentum)

and summed over /:

oo

£ e-PV-nr . I £ (2/+1)
f
(£ +^J)

e-r-lmr d/).

For particles obeying Bose statistics and having no spin, the co-ordinate wave

functions must be symmetric ; this means that only even values of / are pos-

sible, and so the summation over / is over all even integers.

In free motion, all the phase shifts d
t
= 0. The expression remaining when

<3j = is therefore the part of the sum which is unrelated to the interaction

of the atoms and is to be omitted. Thus we obtain the following expression

for Zint :

oo

Zmt = ^ elSnllT+-H f
(2/+l)^p e-P*lmT dp, (77.4)

n I J F

t See Quantum Mechanics, §33.
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and the virial coefficient B = -#
exch+^intis

B{T) = -\{nh*lmTTX\ + 16Zint). (77.5)

The phase shifts b
x
determine the scattering amplitude for particles moving

in the field Ui2(r) by means of the formula*

m =
2I

2

(2/+ 1)(e2i6
'

~ 1)Pl(cos 0)j

where the P
t
are Legendre polynomials, and the angle between the directions

of incidence and scattering; in the present case the summation is over all even

values of /. It is therefore possible to express the integral in (77.4) in terms of

the scattering amplitude. By direct substitution of the expression for f(6) the

following relation may easily be verified

:

The sum on the left-hand side appears in the integrand in (77.4), and on sub-

stituting it and integrating by parts in one of the terms we find

00

Zi„ t
= 2>l*«l/r+_i_ f P2e-PtlmT[m+f*mdp+

n J

.fL%-p./mT^_/.|j dpd0 . („.6)
I

If there are discrete levels in the field J7i2(r), then at sufficiently low temper-

atures the dependence of B(T) on temperature will be mainly governed by
the sum over the discrete levels, which increases exponentially with decreas-

ing T. There may, however, be no discrete levels; then the virial coefficient

will vary as a power of the temperature (if we bear in mind that the scattering

amplitude tends to a constant limit as p — 0, we easily find that at sufficiently

low temperatures B will be determined mainly by the term Bexcb).

It may be noted that in the case of a weak interaction, when particle colli-

sions can be described by the Born approximation, the scattering amplitude is

small and the third term in (77.6), which is quadratic in the amplitude, may
be omitted. For weak interaction there are no bound states, and so the first

term in (77.6) is also absent. Using the familiar expression for the scattering

amplitude /(0) in the Born approximation, which is proportional to ju12r
2 dr,

it is easy to see that the expression for F agrees exactly with (32.3) (without

the quadratic term), as it should in this case.

t See Quantum Mechanics, §122. The cross-section for scattering into the solid-angle
element do is |/(0)|

2 do.
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PROBLEM

Determine the quantum correction (of the order of h2
) in the quasi-classical case in the

virial coefficient B(T) for a monatomic gas.

Solution. The correction to the classical free energy is given by formula (33.15).

Bearing in mind that in the present case only binary interaction of atoms occurs, and that

U12 depends only on the distance between atoms, we find

^n 6mT3
J \ dr }
o

This expression is the correction to the classical value given by (72.5). It may be noted

that Ban > 0.

§78. A degenerate "almost ideal" Bose gas

The problem of the thermodynamic properties of an "almost ideal" highly

degenerate gas (the case of slight degeneracy having been considered in §77)

has no direct physical significance, since the gases which actually exist in

Nature condense at temperatures near absolute zero. Nevertheless, because

of the considerable methodological interest of this problem, it is useful to

discuss it for an imaginary gas whose particles interact in such a way that

condensation does not occur.

The condition for a gas to be "only slightly non-ideal" is that the "range

of interaction" a of the molecular forces should be small compared with the

mean distance between the particles, / ~ (V/N)113
. Together with the condition

a <sc /, the inequality

ka « 1 (78.1)

will also be satisfied, where k = p/h are the wave numbers of the gas parti-

cles. In conditions of strong degeneracy, the existence of such an inequality is

evident from dimensional arguments, and it may also be proved directly by

estimating the order of magnitude of the particle momenta. 1
"

We shall consider here only binary interactions between particles (again

denoting the interaction energy of two particles by Un). Our purpose is to

calculate the leading terms in the expansion of the thermodynamic quantities

in powers of the ratio a/1 by using some form of quantum perturbation theory.

The difficulty is that, because of the rapid increase of the interaction energy U
at small distances between the particles, perturbation theory (the Born

approximation) cannot in fact be directly applied to particle collisions. This

difficulty can, however, be circumvented in the following way.

t For a degenerate Fermi gas the order of magnitude of the limiting momentum is given

by formula (56.2): p<Jh ~ (W^, /,« Ma. For a Bose gas we shall see below that the major-

ity of the particles (outside the "condensate") have momenta p/h ~V(aN/V), for which

the inequality (78.1) again holds.
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In the Born approximation, the scattering cross-section in a collision of two
particles of mass m is given by the squared modulus of the scattering ampli-

tude

1
Ttl

where hq is the momentum transferred in the collision.* When the condition

(78.1) holds, i.e. in "slow" collisions, q«r« 1 throughout the important range

of integration, and the amplitude tends to a constant limit, which we here

denote by — a\$

a = mUo/4nH2
,

(78 T\
U = jU12(r)dV.

K
'

}

Since this quantity entirely defines the properties of collisions, it must also

determine the thermodynamic properties of the gas (when the Born approxi-

mation is applicable).

Thus the following procedure can be used. We formally replace the true

energy J7i2 by another function with the same value of the scattering ampli-
tude but such as to permit the application of perturbation theory. So long as

the final result of the calculations contains U12 only in the scattering ampli-
tude (i.e. in any approximation for which this is true), this result will be the

same as that which would be obtained for the true interaction.

Let us first calculate the energy spectrum of low excited states of an almost
ideal Bose gas. It has been shown by N. N. Bogolyubov (1947) that this may
be done by applying perturbation theory in the second quantisation method.
The Hamiltonian of a system of JV particles (which we shall assume to have

no spin), taking account only of binary interaction between the particles, is

written as follows in the second quantisation method :

"

* " l^<°* +Tl U^f&SK- (™.3)

Here a
p
+

, <2
p
are the "creation" and "annihilation" operators for a free par-

ticle with momentum p, i.e. in a state described (in volume V) by the wave
function

1 «

V V

t See Quantum Mechanics, §125.
The cross-section for scattering into the solid-angle element do (in the centre-of-mass

system) is da = |/|
2 do if the quantum identity of the particles is ignored. When this identity

is taken into account, da = 4|/|
2 do, and to obtain the total cross-section da must be inte-

grated over a hemisphere (not over the whole sphere).
X The quantity a is sometimes called the scattering length.
II See Quantum Mechanics, §64.
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The first term in (78.3) corresponds to the kinetic energy of the particle, and

the second to its potential energy. In the latter term the summation is over

all values of the momenta of a pair of particles such that the law of conser-

vation ofmomentum in collisions is satisfied

:

P1+P2 = Pi'+Pa';

only with this condition are the matrix elements

Uff = -L
j

j
ei^i-vi')-r1 ih+i(v2-vi')-Tt ih Ui^t2 _ Ti)dVi ^ V2

= y[e- i9*l*U
12(r)dV (78.4)

different from zero (p = p2
'— P2 = — (pi' — Pi) is the particle momentum

exchange in the collision). Since in our case the particle momenta are assumed

small in accordance with (78.1), the matrix elements in all the terms of

importance in the sum can be replaced by their values for p = 0, putting

The application of perturbation theory to the Hamiltonian (78.5) is based

on the following remark. In the ground state of an ideal Bose gas, all the

particles are in the "condensate", i.e. in a state of zero energy: N = N,

N = for p 9± 0. In an almost ideal gas in low excited states (and in the

ground state) the occupation numbers JV
p
are not zero but are very small

compared with N . Since d +d = N s* N is very large compared with unity,

it follows that the expression dod
+ -d +d = 1 is small compared with do,

d + themselves, and so the latter may be regarded as ordinary numbers (equal

to VNo), ignoring the fact that they do not commute.

The application of perturbation theory now requires a formal expansion of

the quadruple sum in (78.5) in powers of the small quantities o
p , d9

+
(p =* 0).

The zero-order term of the expansion is

W<Wo = a *. (78.6)

There are no first-order terms, since they cannot be such as to satisfy the law

of conservation of momentum. The second-order terms are

VI GV»-i+V*V + 4W- (78 -7>

Restricting ourselves to accuracy as far as second-order quantities, in (78.7)

we can replace a 2 = #0 by the total number N of particles. In the term (78.6)

we must use the more precise relation

<+ I av
+dp = N.

p*o
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The sum of the terms (78.6) and (78.7) thus becomes

N2+N^ (ava_v + av
+a_v

+ +2av
+av),

and after substitution in (78.5) we obtain for the Hamiltonian the expression

ZV LV p^o P

The integral U which appears here has still to be expressed in terms of an

actual physical quantity, the scattering amplitude. In the second-order terms

in (78.8) (which are needed only to determine the energy spectrum; see below),

this can be done directly from (78.2). In the first term (which is important in

determining the energy of the ground state of the system) this formula, which

corresponds only to the first approximation of perturbation theory, is insuf-

ficiently exact.

To obtain a more precise relation, we recall that, if the probability of a

given quantum transition of a system under the action of a constant pertur-

bation V is determined in the first approximation by the matrix element Fj,

then in the second approximation F° is replaced by

T/oyn
v0 , y, Vn r o

where the summation is over all states of the unperturbed system.* In the pres-

ent case of a collision in a two-particle system, V% becomes U™ = U /V.

Using also the other matrix elements (78.4) y we find that to go from the

first to the second approximation we must replace E/o by

1 \fU12e-*-*l*dV\*
Uo+ v£ =?/m

or, again replacing* all the integrals by U as in (78.5), by

Instead of (78.2), we therefore have

a = ** a
*(

l-T$.?r (78 -9)

or, to the same accuracy,

m \ V v%p2
J

t See Quantum Mechanics, §43.

t This replacement leads to a sum which diverges for large p, but this does not matter,

since on subsequent substitution in the Hamiltonian a convergent expression is obtained,

in which large values of p are unimportant.
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Substituting this in (78.8), we find the Hamiltonian

~ Inh2 N* / 4^2o _ 1\

aw F M1

/>

+ £^V^- (78.10)

To determine the energy levels, we must bring the Hamiltonian to diagonal

form; this is achieved by an appropriate linear transformation of the opera-

tors d
p , dp

+
. We define new operators 7)

p , 7>
p
+ by

tfP = upbp + v
pb_p

+
,

av
+ = wpSp

+ +V>Lp ,

and require them to satisfy the commutation relations

£PV- bp>bp = 0, Sp/5p<
+ - b9

>
+Sp = 6Pp',

which are similar to those for the operators d
p , dp

+
. It is easy to see that this

imposes the condition u
p
2-v

p
2 = 1. Using this, we write the linear transfor-

mation in the form

b9+Lpb_ p
+ * + = V+1^ (78.11)

V(i-V) '

V(i-V)
'

The quantity L
p

must be so defined that the non-diagonal terms

(b
p
b_

p , />
p
+£_ p

+
) disappear from the Hamiltonian. A simple calculation gives

mV [ d2 1

where

e<J>) = V["V+(/>72m)2
L (78.13)

u = V(4nfi2aN/m2 V). (78.14)

The Hamiltonian then becomes

H = E + £ K/OVSp, (78.15)
p^o

where

EQ = $Nmu*+i £ \e{p)- £- -m^+^X . (78.16)
p^

y
Am p

J

The Hamiltonian (78.1 5) and the Bose commutation relations for the opera-

tors b
p
+

, 6
p
show that6

p
+and£>p are the "creation" and "annihilation" oper-

ators for quasi-particles (elementary excitations) with energy e(p), obeying

Bose statistics. The quantity b
p
+ b

p
= n

p
is the number of quasi-particles with
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momentum p, and formula (78.13) gives the relation between their energy and

momentum; the occupation numbers for the quasi-particles are denoted by

n to distinguish them from the occupation numbers N
v
for the actual parti-

cles of the gas. This completely determines the energy spectrum of the low

excited states of the gas considered ; it is, of course, a Bose-type spectrum (§66).

The quantity E is the energy of the ground state of the gas. Replacing

the summation over discrete values of p (in the volume V) by integration over

p after multiplication by F/(2jr/*)3, we obtain after some calculation

2xh2a N2

E =
m V

128 i<m
+
15V^V V

(78.17)

(T. D. Lee and C. N. Yang 1957). This gives the first two terms of an ex-

pansion of this quantity in powers of^(azN/V). However, even the next term

can not be calculated by the above method; it must contain l/V2
, and a

quantity of this order depends on ternary as well as binary collisions.

For large momenta (p» mu) the energy e (78.13) of the quasi-particles

tends to p2/2m, i.e. to the kinetic energy of a single particle in the gas. For

small momenta (p <c mu) we have e = up. It is easy to see that u is the

velocity of sound in the gas, so that this expression is in accordance with the

general statements in §66. At absolute zero the free energy is equal to E, and

from the leading term in the expression for the latter we find the pressure

dE 2nh2a N2

P = -
dV m V2

The velocity of sound is u = -y/(dP/do), where q = mN/V is the gas density,

and this agrees with (78.14)t .

It may be noted that, in the gas model considered, the scattering amplitude

a must necessarily be positive (corresponding to repulsion between the parti-

cles). This is formally evident from the fact that imaginary terms appear in

the above formulae for the energy if a < 0. The significance of the condition

a > is that it is necessary in order to satisfy the thermodynamic inequality

(dP/dV) T < in this model of a Bose gas.

The statistical distribution of elementary excitations at a non-zero tem-

perature is given simply by the Bose distribution formula (with zero chemical

potential):

n~v = l/(e°lT-l).

The momentum distribution of the actual particles of the gas is easily cal-

culated to be

Nv = dp
+dp .

t The two limiting forms of e(p) can legitimately be considered in the approximation
used, since the change from the phonon region (e as up) to the free-particle region (e as

p2/2m) occurs at momenta p/fi ~ mu/h ~ y'(aN/V), which satisfy the condition (78.1).
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Substituting (78. 11) and using the fact that the products b_Jbv and b + b_ +

have no diagonal matrix elements, we find

s^+vyi) . (7818)

This expression is, of course, valid only for p ^ 0. The number of particles

with zero momentum is

*-'-£5='-cip^ (7819>

In particular, at absolute zero n~
v
= for p ^ 0, and from (78.12) and

(78.18) we obtain the distribution function in the form 1
"

2„4m'uND = 7
— (78.20)p 2e(p){e(p)+p2/2m+mu2 }'

The departure of the Bose gas from the ideal state naturally causes the

appearance of particles with non-zero momentum even at absolute zero ; the

integration in (78.19), with iV
p
given by (78.20), is elementary, and the result is

A further remark should be made concerning the spectrum considered here.

For small p the derivative de/dp > u (the curve e(p) turning upwards away

from the initial tangent e = up). It is easy to see that when the function e(p)

is of this type the laws of conservation of energy and momentum allow a

spontaneous decay of the quasi-particle (phonon) into two others. This means

that the spectrum found is actually unstable throughout its extent (from small

p onwards) ; the elementary excitations in it have a finite lifetime. The spon-

taneous decay time is large, however, so that the corresponding level width

is small (being proportional to p5 when p is small) and does not affect the

results obtained in the approximations considered here.*

t It may be noted that the maximum number of particles having a given magnitude of

the momentum (~ p*N~p) lies atp/H ~ \/(aN/V), where the change occurs from one limiting

form of e(p) to the other. This has already been mentioned in the first footnote to this

section.

t The spectrum of an actual Bose-type quantum liquid (liquid He4
) does not possess such

an instability. Here the curve e(p) turns downwards from the initial tangent e = up, and
so the spontaneous decay of the phonon is not possible. The finite lifetime of the phonon
then depends only on its interaction (by collisions) with other quasi-particles, and when
their concentration is small the lifetime is very long.
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§79. A degenerate "almost ideal" Fermi gas with repulsion between the

particles

For a degenerate "almost ideal" Fermi gas, models are in principle allow-

able with either a repulsive (scattering amplitude a > 0) or an attractive

(a < 0) type of interaction between particles, but the properties of the gas

are entirely different in these two cases. We shall first consider the case of

repulsive interaction.

The state of a free particle with non-zero spin (which we shall assume to

be i) is determined by the z-component a of the spin as well as by the mo-

mentum p. Accordingly, the second quantisation operators will be written

with double suffixes, and (78.3) becomes

-i-4 V /ypi'ai'> P*'a*'fl , ,

+d , ,
+d d . (79 H+ 2 2-i

U
Vi ai » P* °t "Pi "l P« "*

u
P»«V*Pi<V v

'
y - l )

As in (78.3), we replace all the matrix elements in the second term by the

value
r/0<Ji', Oat'
^Ooi, 0at

which they have when the particle momenta are zero. Next, we note that,

since the operators a
piffi

, d
Vt<tt

anticommute in Fermi statistics, their product

is antisymmetric with respect to interchange of the suffixes, and the same is

true of the products V<v
+
<V<v

+
- Tnus a11 terms in the second sum in

(79.1) which contain the same pairs of suffixes Ou02 or ax,a% are zero.

Physically this occurs because, in the limiting case of slow collisions of like

particles, only particles with opposite spins can scatter each other. 1

Using the notation!

U /V=U°t
:
°z-U°l>X (79.2)

(the suffixes + and — henceforward denoting a = +-J and a = - £), we

obtain the Hamiltonian in the form

n = \^n tr+tw+ y- 1V+
+V-+

"p,-«p1+ > (79 - 3)

the summation in the second term being over all values of the momenta

subject to the conservation law P1+P2 = Pi'+ P2'.

The eigenvalues of this Hamiltonian are calculated by quantum perturba-

tion theory in its usual form, regarding the second term in (79.3) (the energy

of interaction of the particles) as a small correction to the first term (the

t See Quantum Mechanics, §135. When f— constant, the amplitude in formula (135.3)

tends to zero.

t If the interaction of the particles is independent of spin, the second term is zero (the

collision does not change the spin of either particle separately).
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kinetic energy). The latter is already in diagonal form, and its eigenvalues
are

P2

*(0) = E&:'V, (79.4)
p,a-

The first-order correction is given by the diagonal matrix elements of the

interaction energy:

* (1) 4°E "P1+«P2- (79.5)
r

Pi, Pa

To find the second-order correction, we use the well-known formula of
perturbation theory

P (2) _ V" 1
nm

I

n ~ L E -E '

where the suffixes n and m label the states of the unperturbed system as a

whole. A simple calculation gives 1
"

(withpi+ p2 = Pi'+ P2')- The structure of this expression is quite clear: the

square of the matrix element for the transition pi, p2 -* pi', p2
' is proportional

to the occupation numbers of the states pi, p2 and to the number of "vacan-

cies" in the states pi', p2
'.

The second-order terms in the energy, however, are not all given by this

expression. A contribution of the same order arises from (79.5) when U is

expressed in terms of the scattering amplitude. By the same method as that

used to derive (78.9), we now findt

mU
a =

AnfP
i+^Z 2m

y # Pi
2 +P22

-Pi 2-P2

Hence, expressing U in terms of a and substituting in (79.5), we obtain, as

well as the first-order quantity

E™ = # I "px+«p,-> (79.7)
V Pl,P2

t This sum in the form (79.6) is divergent owing to the replacement of all the matrix

elements in (79.3) by a constant; its divergence does not affect the subsequent discussion

(cf. the sixth footnote to §78).

$ By a we mean the scattering amplitude for slow particles, which is independent of their

energy. The formula written here seems at first sight to involve a dependence on the mo-
menta p l9 p 2 . In reality, this dependence occurs only in the imaginary part of the amplitude

(which appears when the correct method of summation is used), and this can be ignored,

since we know that the final result will be real.
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second-order terms which together with (79.6) give

jr<2> = ?«? V "p.+Mpi-Ki-Hpi'+Xl-flp,'-)-!]
.

V2
».£»,' (^ 2 +

JP2
2-

JPi
,2-

JP2
'2)/2m '

for brevity the notation g = 4nh2a/m is used in the intermediate formulae.

Expanding the numerator, we see that the term containing the product of

four n is zero, since its numerator is symmetric and its denominator anti-

symmetric with respect to the interchange of pi, p2and pi', p2 '; the summation

over these variables is symmetrical. Thus we have finally

r<2) _ _?Jl
2 V w

Pi+wPg-(wPi'+ + wPi ,~)
(1QX\

V2 *,&*• (Pi
2 +P22 -Pi 2-P2 2)/2m U™}

By means of these formulae we can, first of all, calculate the energy of the

ground state of the gas. To do so it is necessary to put all the «pa equal to

unity within the Fermi sphere p < po and equal to zero outside it. In this

connection it should be noted that, although in the original Hamiltonian the

quantities dva
+ &va give the occupation numbers of the states of the gas parti-

cles themselves, when it is diagonalised by means of perturbation theory we
have a quasi-particle distribution function (which, as in §78, we denote by

«
pff); in the zero-order approximation this function has the values stated.

Noting that

Z «p+ = Z "p- = iN,

p p

we obtain from (79.7) the first-order correction

£

(1) = \gN2/V. In (79.8) we
replace the summation over the four momenta subject to the condition

P1+P2 = Pi' + P2' by integration over pi, p2 , pi', p 2
' after multiplication by

V3

<KPl+P2-Pl
/

-P2
,

)>
{Infif

so that

6(P1+ P2-Pi'-P2
')

F (2) — _ £
~ {Inhf IPl"+P2

2
~Pl 2-P2

d3
/?i d

3
/? 2 d

3
/?i' d3

/?2',

the integration being over the region pi,p 2,Pi ~</?o = h(37i2N/V)113
, the limit-

ing momentum. The calculation of the integral 1" leads to the following final

result for the energy of the ground state (K. Huang and C. N. Yang 1957):

r 3 /3jrW\ 2 /3 /i2 nafPNr, 6a /3N\U3
,£

» = To(-T-j m^lT V
N

[

l +
35{zv) (U - 2 «>S2)

According to the general results given in §68 the spectrum of elementary

excitations (i.e. the function e(p))and the function /(p, s; p', s') which is of

f In practice it is simpler to take the calculation in a different order, first calculating the
function / (see below).

(79.9)
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importance in the theory of Fermi-type spectra are determined by the first

and second variations of the total energy with respect to the quasi-particle

distribution function. If we write E as a discrete sum over p and a, we have

by definition

bE = £ e(p, a)dnva+^ £ /(p, a; p', a') dn9<J dn9W ; (79.10)
p, ct ^ r p, a, p', a'

after differentiating the energy, we must replace npa by unity inside the Fermi

sphere and zero outside it.

There is no need to calculate the energy of the quasi-particles in this way,

however, since the function e(p) is actually meaningful only near p = po

(see §68), and there it is determined by the single parameter m*, which can

also be found in a simpler manner (see below).

To calculate the function /(p, a; p', or') we twice differentiate the sum of the

expressions (79.7) and (79.8) and then put p = p' = p . Effecting this simple

calculation and changing from summation to integration, we obtain

/(p,i,P,-i) = ir-^JJ| W_A._A, +

^(P+Px-P'-P^+^+Px-P-P^
I
d, d,

2(/>i
2-/v) J

/(P,i;p',i)=/(P, -4;p', -*)

_ _4»^_ ff ^P+pi-p
f

~ft
/

)+ W+Pl"P~Pk) M. tf-

The integration in these formulae is comparatively simple, because the

multiplicity of the integrals is less.

The final result must be put in a form independent of the choice of the z-

axis along which the spin components are taken. This is achieved by using

the operator si • S2 of the product of the spins, whose eigenvalues for parallel

and antiparallel spins are respectively i and — f. The result is

„ /3AT\ 1/3 /„ cos0 , l+sini0\l
l+2a ^v) [

2+T^w logT^w)r
'kiaW

m ^[t +2-^
W
(»-i-i'^l±S$)]. C«.»>

where 6 is the angle between the vectors p and p' (A. Abrikosov and I. Kha-

latnikov 1957). f

t The function (79.11) tends logarithmically to infinity when = n. This is a conse-

quence of the approximations made. A more precise investigation shows that, although Q — n

is in fact a singular point of the function, the latter is zero there, not infinite. The inapplica-

bility of formula (79.11) near 8 = n is unimportant in subsequent applications, which con-

tain integrals convergent at that point.
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The effective mass of the quasi-particles is obtained by integrating /, using

formula (68.11), and is given by

m* 8 /3N\ 2 l3

TS-'+^fcp) (7l082 " 1) ' °9A2)

From formula (68.14) we can find the velocity of sound in the gas under

consideration

:

„ TiMfi2 /iV\2/3 2jiah2 N
u2 = (79.13)

Integrating u2m/N with respect to N, we then obtain, in accordance with

formula (68.12), the chemical potential fi of the gas (at absolute zero), and a

further integration with respect to N gives the expression (79.9) for the energy

of the ground state : Eq = f/x dN.

Formula (79.9) represents the leading terms in an expansion of the energy

of the gas in powers of a(N/V)llz
. By similar though considerably more labo-

rious calculations we could obtain some further terms in the expansion, since

in a Fermi gas the ternary collisions contribute to the energy only in a com-

paratively high approximation. Among three colliding particles, at least two

have the same spin projection ; the co-ordinate wave function of the system

must be antisymmetric with respect to these two particles. This means that

the orbital angular momentum of the relative motion of these particles is

equal to at least 1 (p state). The corresponding wave function1" contains an

extra power of the wave number k (as compared with the wave function of

the s state), and therefore the probability of such a collision contains an extra

factor k2
, i.e. is reduced by a factor ~ (ka)2 ~ a2(N/V)213 in comparison with

the probability of a "head-on" collision of particles not obeying Pauli's

principle. Thus ternary collisions give a contribution to the energy only in

terms which contain the volume as V~ 2
> V~ 213

. In other words, the charac-

teristics of the binary collisions alone determine all terms in the expansion

of the energy as far as those of order (ah2N2lmV)[a(NIV)llz
]
i

' inclusive, i.e.

three more terms after those written in (79.9). However, the characteristics

of binary collisions will include not only the j-wave scattering amplitude for

slow collisions (as in (79.9)) but also its energy derivatives and the /?-wave

scattering amplitude.

In conclusion we may make one further remark with a view to the com-
parison (in §80) with the properties of another type of Fermi gas. We have

spoken here of quasi-particles whose number is equal to that of the gas

particles; at T = these quasi-particles occupy the Fermi sphere. This cor-

responds to the general treatment of a Fermi liquid given in §68 (where the

t See Quantum Mechanics, §33.
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relation between the magnitude of the limiting momentum po and the density

of the liquid was formulated in this way). An equally reasonable view, how-
ever, is one according to which the elementary excitations appear only when
1^0 and the fully occupied Fermi sphere is unobservable. In this picture

the elementary excitations correspond to quasi-particles outside the Fermi

sphere and "holes" within it; the energy e — v(p—po) must be ascribed to the

former, and e = v(po - p) to the latter. The statistical distribution of each is

given by the Fermi distribution formula with zero chemical potential, in

accordance with the fact that the number of quasi-particles is not constant

but depends on the temperature (cf. (60.1)):

«p
= l/(e*l T+l). (79.14)

§80. A degenerate "almost ideal" Fermi gas with attraction between the

particles

At first sight the calculations given in §79 appear equally applicable for

both repulsion and attraction between gas particles. In reality, however, in the

case of attraction, the ground state of the system thus found is unstable with

respect to a certain rearrangement which alters its nature and decreases the

energy.

The origin of this rearrangement is indicated by the fact already mentioned

in §79 that the expression (79.11) for the function f(6) obtained by means of

perturbation theory has a singularity at 6 = n, i.e. when the momenta of the

two quasi-particles are in opposite directions. Near this singularity,

/~(l-4si.92)log(l-sini0),

i.e. the singularity exists only when the spins of the particles are antiparallel

(since l-4si.s2 = when the spins are parallel). The appearance of this

singularity indicates the invalidity of perturbation theory (in the form used in

§79) when applied to the interaction of pairs of particles which are (in p-space)

near the Fermi surface and have opposite momenta and spins. As will be seen

from the results derived below, in the case of attraction it is just this inter-

action which leads to novel effects. 1
"

It is clear from the foregoing that the system of operators dpa, dv„
+ cor-

responding to free states of individual particles of the gas can not serve as

a correct initial approximation of perturbation theory. Instead of these, we

must immediately define new operators, which will be written as the linear

t The problem considered here is the basis of the theory of superconductivity due to

Bardeen, Cooper and Schrieffer (1957). In the solution given below we mainly follow

the method developed by N. N. Bogolyubov (1958).
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combinations

P P
(80.1)

b9+ = updv+-vpd-v-
+

,

of the operators of particles with opposite momenta and spins; when the gas

is isotropic, the coefficients u
p , vp

can depend only on the absolute magnitude

of the momentum p. In order that these new operators should correspond

to the creation and annihilation of quasi-particles, they must satisfy the same

Fermi commutation rules as the previous operators

:

Spipa
+ +V+V= 1 (80.2)

and all other pairs of operators anticommute. For this to be so, the transfor-

mation coefficients must satisfy the condition

"p
2+V = 1 (80 -3)

(u and v are assumed real, in order to make the quasi-particle occupation

numbers real). The inverse transformation to (80.1) is

dv+ = Upb9++vpb-v-
+

,

(80.4)

<2p_ = upbv--vpb-v+
+

.

For the same reasons (the importance of the interaction between particles

with opposite momenta and spins), we retain in the second sum in the Hamil-

tonian (79.3) only the terms in which pi = — p2 s p, pi' = — p2
' = p':

# = Z £<V+<V-# Z <V+
+
a-P'-

+
*-P-0p+ > (80-5)

p, a ^•m Y p, p'

where g = 4nft2 \a \/m (the scattering amplitude a is now negative).

In the subsequent calculations it will be convenient to avoid the necessity

of explicitly taking account of the constancy of the number of particles

(atoms) in the system. In accordance with the general rules of statistical

physics (cf. §35), this must be done by replacing the Hamiltonian function

Hby the difference H-fiN, where the numberN of particles is itself regarded

as a variable; the chemical potential is then determined, in principle, by

the condition that the mean value AT is equal to the given number of particles

in the system. In the second quantisation method this means that the Hamil-

tonian k is replaced by the difference A— fift, where the operator

N = Z <Zpc
+
£pa •

P. o

We shall henceforward refer to this difference as the Hamiltonian and denote

it by B simply.
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We also use the notation

£p = p2/2m-fx.

Since (i 2* p 2/2m, near the Fermi surface we have

h = v(p-p ), (80.6)

where v = pojm. Subtracting fiN from the expression (80.5), we can therefore

write the initial Hamiltonian in the form

p,a V
P) p'

In this Hamiltonian we make the transformation (80.4), use the relations

(80.2) and (80.3) and replace the summation suffix p by — p, obtaining

H = 2l!PV + l£p("P2-V)(VfV+

V

+V) +
p p

+ 2E£pKp»p(Vi- +£-p- + + &-p-£p+)-£ 2 Bp>
+Bp, (80.8)

P V 9,9'

Bv = Mp
2S_p_^ p+ -i;p

2Sp+ +S_p_ + + vpMp(S_p_S_p_+-Sp+ + ^p+ ).

The coefficients u
p , vp are now chosen from the condition of minimum

energy E of the system for given entropy. The entropy is essentially defined

by the combinatorial expression

S = - E K* lQg «pa+ ~«pa) lOg (1 ~«pa)]. (80.9)
P. »

The condition mentioned is therefore equivalent to that of minimum energy

for given occupation numbers npa of the quasi-particles.

In the Hamiltonian (80.8) the diagonal matrix elements contain only terms

which include the products

Djto ^Pa
== fpcr ,

^Por^P CT — 1 Wpor .

We therefore find

E = 2 £ £PV + £ £p(«p
2 - vp

2
)(»p+ + «P-)—^ [ £ vP(l

-«
P+ -«P-)J

•

p p p,p'

(80.10)

Varying this expression with respect to the parameters u
p
(using the relation

w
p
2 + vp

2 = 1), we obtain as the condition for a minimum

*E 2 ,,

X 2£pUpVp- ^(«p
2 -Vp

2)j;Mp^p/(l-V+-V-)
K

P'
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Hence we have the equation1
"

2£pupvp = A(up*-vp*), (8(U1 )

with the notation

A = ££Kp,v(l-Hp'+-V-)- (8(U2>

p'

From (80.11) and (80.3) we can express u
p
and v

p
in terms of |p and A

Substituting these values in (80.12), we obtain an equation which deter-

mines A

:

J_ l-/lp+ -Wp.

2F L V(^2+^2
)

l ;

Let us now examine the relations just derived. We shall see that the quan-

tity A plays a fundamental part in the theory of spectra of the type under

consideration. Let us first calculate its value for T = (denoted by A ).

For T = there are no quasi-particles : np+ = «
p
_ = 0. It may be noted

at once that the equation then obtained for A certainly could not have a

solution for g < 0, i.e. in the case of repulsion (the signs of the two sides of the

equation then being necessarily different).

Changing from summation to integration in (80.14), we obtain the equation

I

47tp2dp
=1. (80.15)

2(M)»JVW+ fp*)

The main contribution to this integral comes from the range of momenta
where A «: v\po —p\ « vpo ~ [*> and the integral is logarithmic; the smallness

of A in comparison with fi is confirmed by the result.* Then

r p*dP _ Po*r

J VW+v*(p -p)*] - v
J

V ^.21ogf,vw+a ~ v *a

t It may be noted that by virtue of this relation all the terms cancel in the Hamiltonian

(80.8) which contain one pair of the operators b9+
+ b -p _

+
, i.e. the terms which correspond

to the creation of one pair of quasi-particles with opposite momenta. These are just the
terms which in the first order of perturbation theory might lead to divergent integrals.

t For p » p , the quantity |, ~ p 2 and the integral as written here diverges as p. In
reality, however, this divergence is spurious, and is removed by "renormalising" the rela-

tion between the constant g (i.e. the scattering amplitude a) and the interaction potential,
in the same way as in §§78 and 79. A consistent carrying out of the fairly complicated cal-

culation makes it possible to determine also the coefficient fi in the logarithm in (80.16).
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where /? is a numerical coefficient. Thus we find

27t2/*3
g J ~

'

whence

/ue -2*»*ft8/flrmpo = ne~ "^^Pol a

\

(80.16)

(80.17)

Since ]?o| |/# « 1, ^ is exponentially small compared with /z.

The most interesting result is the form of the energy spectrum ofthe system,

i.e. the energy cp+ = e
p
_ = e(p) of the elementary excitations. We shall

find this from the change in the energy E of the whole system when the occu-

pation numbers of the quasi-particles vary, i.e. by varying E with respect to

npc . Since the values of u
p
and v

p
have already been chosen by equating to

zero the derivatives ofE with respect to them, the variation ofE with respect

to npa can be effected with u
p and vp constant. We then have from (80.10)

- /
dE

\-(
\
bn*°LptVp

2g= €p(up
2- vp

2)+-y upvp £ *vVO ~V+ -V-)>

and substitution of (80.12) and (80.13) gives

s(p) = V(^+ £P
2
). (80.18)

This demonstrates a remarkable property of the energy spectrum of the

system under consideration: the energy of a quasi-particle cannot be less than

A, and this value is reached when p = p . In other words, the excited states

of the system are separated from the ground state by an energy gap. The

quasi-particles must appear in pairs, since they have a half-integral spin. In

this sense we can say that the magnitude of the gap is 1A.

p-p„

Fig. 11

The spectrum (80.18) satisfies the superfluidity condition derived in §67: the

minimum value of s/p is not zero. A Fermi gas with attraction between the

particles must therefore be a superfluid.

Fig. 1 1 gives a comparison of the dispersion relations for quasi-particles

in a superfluid (upper curve) and a normal system (these names referring to
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systems with spectra as considered in §§80 and 79 respectively). In the normal

system the relation is given by the two straight lines e = v\p —po\ in accord-

ance with the discussion at the end of §79.

The gap width A depends on the temperature, i.e. the shape of the spectrum

itself depends on the statistical distribution of quasi-particles—a situation

similar to that which occurs for a normal Fermi liquid (§68). Since, as the

temperature increases, the occupation numbers of the quasi-particles increase

(tending to unity), we see from (80.14) that A decreases and becomes zero at

some finite temperature Tc
: the system passes from the superfluid to the nor-

mal state. This point is a phase transition of the second kind, like the transi-

tion in liquid helium (see §67).

The presence of the energy gap in the spectrum under consideration can be

intuitively regarded as resulting from the formation of bound states by pairs

of attracting particles; then 2A is the binding energy of such a pair, which

must be expended in order to disrupt it. It is worthy of note that this effect

occurs in a Fermi gas for any attraction, however weak. Having zero spin,

the pairs behave as Bose objects, and a finite number can reach the level of

lowest energy, i.e. the level with zero total momentum. In this intuitive inter-

pretation this effect is entirely analogous to the steady increase of particles

in a state of zero energy in a Bose gas (Bose-Einstein condensation, see

§59).

The idea of bound pairs must not, of course, be taken too literally. It

would be more precise to speak of a correlation between the states of a pair

of particles in p-space, leading to a finite probability of the particles' having

zero total momentum. The spread dp of momentum values in the region of

correlation corresponds to an energy of the order of A, i.e. dp ~ A/v. The

corresponding length / ~ h\bp ~ hvjA gives the order of magnitude of the

distances between particles with correlated momenta. This quantity for T =
is

lo~(fi/P )enmpo[al
, (80.19)

and, since in a degenerate Fermi gas ftjpo is equal in order of magnitude to the

distances between atoms, we see that / is very large in comparison with the

latter. This shows very clearly the arbitrariness of the idea of bound pairs.

Let us now determine explicitly the temperature dependence of the gap

A(T). Writing equation (80.14) as

_1 +I.yl = ly!!!
2V^ e V L e

p p

(Wp+ = n
p
_ = «

p),
we note that the sum on the left-hand side differs from

that for T = only in that A is replaced by A. Thus, using (80.16), we see

that the left-hand side of the equation is equal to (gpom/lnPh3
) log (Ao/A).

On the right-hand side we substitute for n
p
the Fermi distribution function
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(with zero chemical potential; cf. the end of §79) and change from summation
to integration over p (dp = dg/v)

:

where

dx
U)

J V(*2+«2
/(«) =

<
2)(eV(*2+«2

)+i)
'

o

the limits of integration can be taken as ± oo because of the rapid conver-

gence of the integral.

At low temperatures (T <z: J) the calculation of the integral is simple 1" and

A = A [l-V(^T/A )e-^lTi (8o.2l)

In the region near the transition point, A is small, and the leading terms of

the expansion of the integral I(AjT) give*

, Jo , nT 7C(3)J 2

log
j

=lo^- +i^V (80 -22)

t For large u the first term in the expansion of I(u) in powers of l/« is

/(«) *
J

15 «,-<*+*'/««'> = v(«/2ii)e-.

o

J To expand the integral /(«) for w -»• we add and subtract the integral

/i = -=- I ,, , 5T tanh — a: d*.
2 J IV(*2+ « 2

) x 2 J

o

Then I = 7i+ /2 , where
oo

72 = y J [I
tanh t x"vo^) tanh t V(*2+ "2)

]

d*-

In 7X the integration of the first term in the integrand is elementary, and the second can

be integrated by parts

:

/i= - 1o8t m+t/
,0gX

dx.
cosh 2 \ x

The integral in this formula is equal to 2 log {n/ly) (where log y = C = 0.577 is Euler's

constant), and so Ir
= log (n/yu).

The integral I2 vanishes when u = 0. The first term in its expansion in powers of u 2
is

Substituting the well-known expansion

°°
1

tanh \ x = Ax Y -— —
,2 *" 7i

2(2n+l) 2+ x 2 '

n=
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Hence, first of all, we see that A is zero at a temperature given by

Tc
= yA jn = 0.57A

, (80.23)

which is small compared with the degeneracy temperature T ~ p. Then we

have to the first order in T
c
—

T

' ** T. " T
7C(3) JH)

= 3.06rc /(i-^)- (80 -24>

It remains for us to calculate the thermodynamic quantities for the gas.

Let us first consider the region of low temperatures, T «: A. To calculate the

specific heat in this region, it is simplest to start from the formula

i>E = Z eP(&n9+ + 5wp-) = 2 Z ep&nv
p p

for the change in the total energy when the quasi-particle occupation numbers

are varied. Dividing by 6T and changing from summation to integration, we

obtain the specific heat

:

mpo C dnC= VMp\ e
QT

di -

For T<szA, the quasi-particle distribution function n =^ e
elT

, and so we

have

C= V
mpo

2 e2e-rl T d£

or, finally,

we obtain

2mppA 2

IT
.

S2j2Tj ,£

c ="w(t) *~" t
- (80-25)

/ = 4M 2 y |*
dx_

2
4" J [(2«+l) 2

7T
2 ^v212

-7-2 La

+ * 2
]
2

1

n 2 ^(2«+l) 3

« 2 .7t(3)/8.-r
2

.
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Thus when T -* the specific heat decreases exponentially—a direct conse-
quence of the gap in the energy spectrum.

In the subsequent calculations it is convenient to start from the thermo-
dynamic potential Q, since the whole discussion takes place for a constant
chemical potential of the system, not a constant number of particles in it.

1
"

We use the formula

(dQ/dg) T, v , „ = dH/dg (80.26)

(cf. (11.4) and (15.11)), where the parameter X is taken to be the coefficient g
in the second term in the Hamiltonian (80.7), which describes the interaction

of the gas particles. The mean value of this term is given by the last term in

(80.10), which from (80.12) is equal to - VA2
/g. We therefore have dQ/dg =

-VA*/g. Wheng -* 0, the quantity A tends to zero, and therefore so does
A. Hence, integrating this equation with respect to g over the range to g,
we find the difference between the thermodynamic potential Q in the super-

fluid state and the value which it would have in the normal state {A = 0) at

the same temperature :t

Q

CA2

Qs
-Qn =-Vl-T dg. (80.27)

o

According to the general rules (see (24.16)), this small correction, when ex-

pressed in terms of the appropriate variables, is the same for all the thermo-

dynamic potentials.

At absolute zero A = A , and from (80.17) we have dZl /dg = 27tWA /

mpog2
. Changing the integration over g in (80.27) into one over A , we find

the following expression for the energy difference of the ground levels of the

superfluid and normal systems:

Es-En = -V(mpc/47iW)A *. (80.28)

The negative sign of this difference indicates that, as already mentioned at the

beginning of this section, the "normal" ground state of the system is unstable

for the case of attraction between the gas particles.

t The chemical potential of the gas itself should not be confused with that of the quasi-

particle gas (which is equal to zero).

X Here the following remark is needed, on account of the approximations which we have
made from the start. When g — 0, no interaction between the particles remains in the

Hamiltonian (80.7), and it might be thought that the result is an ideal Fermi gas, not a
"normal" non-ideal gas. In reality, however, the Hamiltonian (80.7) already involves

approximations such that there can be no question of calculating the absolute value of the

energy. Interaction terms have been omitted which give a contribution to the energy
(although they do not affect the form of the spectrum or the difference Q, -Qn), and this

contribution is large compared with the exponentially small quantity (80.27); it is in fact

the contribution proportional to Ng which has been calculated in (79.9).
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Let us now consider the opposite case, T - Tc
. Differentiating equation

(80.22) with respect to g, we find

An^T2 A mpo g
2 '

Substituting dg/g2 from here in formula (80.27), and taking this formula as

the difference of free energies, we have

and finally, using (80.24),

F -F = - y
2mP°Tc

2

( x -L\\ (80.29)

The entropy difference is therefore

S-S -f V
4mP°T°

(l
T

\*. *n~l y 7^(3)^3^ Tc f-

The difference of specific heats tends to a finite value as T — T
c

:

r -r - 4mP°Tc vCs Cn "
7C(3)ff>

K '

i.e. the specific heat has a discontinuity at the transition point, with Cs
> Cn .

The specific heat of the normal state is given (in the first approximation) by

the ideal-gas formula (57.6), and, expressed in terms of po, it is Cn = mpoTV/3.

The ratio of specific heats at the transition point is therefore

C8(TC) 12 = 243 (80.30)
Cn(Tc) 7C(3)

As regards its superfluidity, the gas is characterised by the division of its

density q into normal and superfluid "parts". According to (67.3) the normal

part of the density is

Qn= ~ „^X3 I P
i:
JZ dP

3(2jifiy

f 4
dn

f5
^o_Lfdn dt

2aiH^v de

The total density of the gas is related to poby q = mN/V = &7ip zm/3(2jift)3
,

and hence

9n = -2 f^d£. (80.31)
de
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This integral need not be specially calculated, since it can be reduced to the

known function A(T). Differentiating equation (80.20) with respect to T and
comparing the resulting integral with (80.31), we see that

Q ,
A

tr l~™- (80 - 32;

Substituting the limiting expressions (80.21), (80.24), we obtain

q-Jq = ^(2jiA /T)e-^ T as T -* 0,

qJq = 2(1 -T/Tc) as T ^ Tc .

(80.33)

Finally, two further comments are needed concerning the validity of the

above formulae throughout the temperature range from to T
c

. Although

the formulae given for small T
c
— T have a range of applicability, they

actually become invalid sufficiently close to the transition point. Processes of

mutual scattering of quasi-particles (ignored by us) must here cause the

appearance of a singularity in the thermodynamic quantities, the nature of

which is as yet unknown. This problem is related to the still unsolved general

problem of the singularity of the thermodynamic quantities at a phase tran-

sition point of the second kind (see §138). Owing to the presence of a small

parameter (the coupling constant g) in the model considered, the range of

influence of this singularity will extend only to the immediate neighbourhood

of the transition point.'1

'

As in an "ordinary" superfluid (§67), so also in the Fermi gas considered

here (unlike the Fermi gas with repulsion; cf. the penultimate footnote to

§68) sound can be propagated, with a velocity u ~ pojin determined in the

usual way by the compressibility of the medium. This means that, together

with the Fermi-type excitation spectrum discussed here, the spectrum of such

a gas contains also a phonon (Bose) branch of excitations. The specific heat

due to the phonons is proportional to T3 with a very small coefficient, but

as r -^ it must ultimately predominate over the exponentially decreasing

specific heat (80.25). t

t The size of the neighbourhood can be estimated from the magnitude of fluctuations in

the model considered : the theory becomes inapplicable when the fluctuations are no longer

small. This estimate gives the condition (T—Te)/Te ~ (TJfi)* ; see V. L. Ginzburg,
Soviet Physics Solid State 2, 1824, 1961.

t This effect does not occur in the charged "electron liquid" in superconductors.



CHAPTER VIII

PHASE EQUILIBRIUM

§81. Conditions of phase equilibrium

The (equilibrium) state of a homogeneous body is determined by specifying

any two thermodynamic quantities, for example the volume V and the energy

E. There is, however, no reason to suppose that for every given pair of values

of V and E the state of the body corresponding to thermal equilibrium will be

homogeneous. It may be that for a given volume and energy in thermal

equilibrium the body is not homogeneous, but separates into two homoge-

neous parts in contact which are in different states.

Such states of matter which can exist simultaneously in equilibrium with

one another and in contact are described as different phases.

Let us write down the conditions for equilibrium between two phases.

First of all, as for any bodies in equilibrium, the temperatures Ji and T2 of

the two phases must be equal:

Ti = T2 .

The pressures in the two phases must also be equal

:

Pi = P2,

since the forces exerted by the two phases on each other at their surface of

contact must be equal and opposite. Finally, the chemical potentials of the

two phases must be equal

:

(Xl = (12,

this condition is derived for the two phases in exactly the same way as in §25

for any two adjoining regions of a body. If the potentials are expressed as

functions of pressure and temperature, and the common temperature and

pressure are denoted by T and P, we have

m(P, T) = (x2{P, T), (81.1)

whence the pressure and temperature of phases in equilibrium can be ex-

pressed as functions of each other. Thus two phases can not be in equilibrium

with each other at all pressures and temperatures; when one of these is given,

the other is completely determined.

257
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If the pressure and temperature are plotted as co-ordinates, the points at

which phase equilibrium is possible will lie on a curve (the phase equilibrium

curve), and the points lying on either side of the curve will represent homo-
geneous states of the body. When the state of the body varies along a line

which intersects the equilibrium curve, the phases separate at the point of

intersection and the body then changes to the other phase. It may be noted

that, when the state of the body changes slowly, it may sometimes remain

homogeneous even when the phases should separate in complete equilibrium.

Examples are supercooled vapours and superheated liquids, but such states

are only metastable.

2 n

Fig. 12

If the equilibrium of phases is plotted in a diagram with temperature and

volume (of a fixed quantity of matter) as co-ordinates, then the states in

which two phases exist simultaneously will occupy a whole region of the

plane, and not simply a curve. This difference from the (P, T) diagram arises

because the volume V, unlike the pressure, is not the same for the two phases.

The resulting diagram is of the kind shown in Fig. 12. Points in the regions I

and II on either side of the hatched area correspond to homogeneous first

and second phases. The hatched area represents states in which the two phases

are in equilibrium: at any point a the phases I and II are in equilibrium, with

specific volumes given by the abscissae of the points 1 and 2 which lie on a

horizontal line through a. It is easily deduced directly from the mass balance

that the quantities of phases I and II are inversely proportional to the lengths

of the segments a\ and al\ this is called the lever rule.

In a similar way to the conditions for equilibrium of two phases, the

equilibrium of three phases of the same substance is governed by the equa-

tions

p1 = p2 = p3 , ri = r2 = r3 , m =
t*2
= ^3 . (81.2)

If the common values of the pressure and temperature of the three phases are
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again denoted by P and T, we have the conditions

pAP, T) = MP, T) = MP, T).

259

(81.3)

These give two equations in the two unknowns P and T, and their solutions

are specific pairs of values of P and T. The states in which three phases are

simultaneously present (called triple points) in the (P, T) diagram are repre-

sented by isolated points which are the points of intersection of the equilib-

rium curves of each pair of phases (Fig. 13, where regions I, II, m are those

of the three homogeneous phases). The equilibrium of more than three phases

of the same substance is clearly impossible.

Fig 13 Fig. 14

In the (T, V) diagram the neighbourhood of the triple point has the appear-

ance shown in Fig. 14, where the hatched areas are those of equilibrium of

two phases; the specific volumes of the three phases in equilibrium at the

triple point (at the temperature T
tT) are given by the abscissae of the points

1, 2, 3.

The change from one phase to another is accompanied by the evolution or

absorption of a certain quantity of heat, called the latent heat of transition

or simply the heat of transition. According to the conditions of equilibrium

such a transition occurs at constant pressure and temperature. But in a pro-

cess occurring at constant pressure the quantity of heat absorbed by the body

is equal to the change in its heat function. The heat of transition q per mole-

cule is therefore

q = vt>2— wi, (81.4)

where wi and w2 are the heat functions per molecule of the two phases. The

quantity q is positive if heat is absorbed by the body in changing from the

first to the second phase, and negative if heat is evolved.

Since, for bodies consisting of a single substance, \t is the thermodynamic

potential per molecule, we can write ft = e —Ts+Pv (where e, s, v are the

molecular energy, entropy and volume). The condition pi = fx 2 therefore
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gives

(e 2-s 1)-T(s2-s 1)+P(v2-v 1) = (wz-wO-Tisz-St) = 0,

where Tand P are the temperature and pressure of both phases; hence

q = T(s2 - Si). (81.5)

We may note that this formula also follows directly from q = fTds with T
constant; the latter formula is applicable here, since the transition is revers-
ible: the two phases remain in equilibrium during the transition process.

Let the two curves in Fig. 15 represent the chemical potentials of the two
phases as functions of temperature (at a given pressure). The point of inter-

section of the two curves gives the temperature T for which (at the given

pressure) the two phases can exist in equilibrium. At any other temperature

only one or the other phase can exist. It is easy to see that at temperatures

below To the first phase exists, i.e. is stable, and at temperatures above To
the second phase. This follows because the stable state is the one where fx

is smaller, since the thermodynamic potential tends to a minimum for given

P and T. At the point of intersection of the two curves, the derivative dpi/dT
is greater than dLi2/dT, i.e. the entropy of the first phase, sx = -d/x^dT, is

less than that of the second phase, s2 = -d[x 2/dT. The heat of transition

q = T(s2 -S!) is therefore positive. Thus we conclude that, if the body goes

from one phase to another when the temperature is raised, heat is absorbed

in the process. This result could also be derived from Le Chatelier's prin-

ciple.

PROBLEMS
Problem 1. Determine the temperature dependence of the saturated vapour pressure

above a solid. The vapour is regarded as an ideal gas, and both the gas and the solid have
constant specific heats.

Solution. The chemical potential of the vapour is given by formula (43.3) and that of
the solid by (62.6); since the saturated vapour pressure is relatively small, the quantity
PVmay be neglected for the solid, and<P taken as equal to F. Equating the two expressions,
we find

P = constant xr(cp2 -ci)e(«oi-'-o2)/r
where the suffix 1 refers to the solid and 2 to the vapour



§82 The Clapeyron-Clausius Formula 261

In the same approximation, the heat function of the solid may be taken as equal to its

energy; the heat of transition (heat of sublimation) q = w 2
— w t is

q = (c
p2
-Ci)r+(e02

-£
i).

In particular, for T = the heat of transition is q = e 2- £oi» so tnat we can write

P = constant xr(^2_Cl)e~?o/r
.

Problem 2. Determine the rate of evaporation from a condensed state into a vacuum.

Solution. The rate of evaporation into a vacuum is determined by the number of

particles which leave unit surface area of the body per unit time. Let us consider a body in

equilibrium with its saturated vapour. Then the number of particles leaving the surface is

equal to the number which strike and "adhere to" this surface in the same time, i.e.

P (\—R)ly/^bimT), where P = P (X) is the saturated vapour pressure, and R a mean
"reflection coefficient" for gas particles colliding with the surface (see (39.2)). If P is not

too large, the number of particles leaving the surface of the body is independent of whether

there is vapour in the surrounding space, so that the above expression gives the required

rate of evaporation into a vacuum.

§82. The Clapeyron-Clausius formula

Let us differentiate both sides of the equilibrium condition fii(P, T) =
Hz(P, T) with respect to temperature, bearing in mind, of course, that the

pressure P is not an independent variable but a function of temperature

determined by this same equation. We therefore write

3/"i d/j,i dP 3^2 3/^2 dP
"ST

+
dP df~ df +W dT'

since (dfx/dT)p = -s, (d[t/dP) T = v (see (24.12)), this gives

dP _ s\ — si

dT vx
— v 2

(82.1)

where si, v\, s<l> V2 are the molecular entropies and volumes of the two phases.

In this formula the difference si — s2 may conveniently be expressed in

terms of the heat of transition from one phase to the other. Substituting

q = T(s2 — Si), we obtain the Clapeyron-Clausius formula:

W_ q

dT ~
7Xt> 2 -t>i)

* (82 '2)

This gives the change in the pressure of phases in equilibrium when the

temperature changes or, in other words, the change in pressure with tem-

perature along the phase equilibrium curve. The same formula written as

dT _ Tjvz-vx)

dP~ q

gives the change in the temperature of the transition between phases (e.g.

freezing point or boiling point) when the pressure changes. Since the molecular
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volume of the gas is always greater than that of the liquid, and heat is

absorbed in the passage from liquid to vapour, it follows that the boiling

point always rises when the pressure increases (dT/dP > 0). The freezing

point may rise or fall with increasing pressure, according as the volume
increases or decreases on melting.

All these consequences of formula (82.2) are in full agreement with Le
Chatelier's principle. Let us consider, for example, a liquid in equilibrium

with its saturated vapour. If the pressure is increased, the boiling point must
rise, and so some of the vapour will become liquid; this in turn will cause a

decrease in pressure, so that the system acts as if to oppose the interaction

which disturbs its equilibrium.

Let us consider the particular case of formula (82.2) which relates to equi-

librium between a solid or liquid and its vapour. Then formula (82.2) deter-

mines the change in the saturated vapour pressure with temperature.

The volume of a gas is usually much greater than that of a liquid or solid

containing the same number of particles. We can therefore neglect the volume

vi in (82.2) in comparison with i?2 (the second phase being taken to be a gas),

i.e. write dP/dT = q/Tv2. Regarding the vapour as an ideal gas, we can

express its volume in terms of the pressure and temperature by v2 = T/P;

then dP/dT = qP/T2, or

dlogP/dT= q/T2 . (82.3)

We may note that, in temperature intervals over which the heat of transition

may be regarded as constant, the saturated vapour pressure varies exponen-

tially with the temperature (~ e~qlT).

PROBLEMS
Problem 1. Determine the specific heat of a vapour along the equilibrium curve of the

liquid and its saturated vapour (i.e. the specific heat for a process in which the liquid is

always in equilibrium with its saturated vapour). The vapour is regarded as an ideal gas.

Solution. The required specific heat h — Tds/dT, where ds/dTis the derivative along

the equilibrium curve:

Substituting the expression given by (82.3) for dP/dT, and v = T/P, we find

h = c,-qlT.

At low temperatures, h is negative, i.e. if heat is removed in such a way that the vapour is

always in equilibrium with the liquid, its temperature can increase.

Problem 2. Determine the change in the volume of a vapour with temperature in a

process where the vapour is always in equilibrium with the liquid (i.e. along the equili-

brium curve of the liquid and its vapour).
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Solution. We have to determine the derivative dvldT along the equilibrium curve:

dv _ (dv\ /dv\ dP

Substituting from (82.3), and v = TIP, we find

dT P\ 77

'

At low temperatures dv/dT < 0, i.e. the vapour volume decreases with increasing tempera-

ture in the process considered.

§83. The critical point

The phase equilibrium curve (in the PJ-plane) may terminate at a certain

point (Fig. 16), called the critical point; the corresponding temperature and

pressure are the critical temperature and the critical pressure. At tempera-

tures above T
c
and pressures higher than P

c , no difference of phases exists,

the substance is always homogeneous, and we can say that at the critical

point the two phases become identical. The concept of the critical point was

first used by D. I. Mendeleev (1860).

Fig. 16 Fig. 17

In the co-ordinates T, Vt when there is a critical point, the equilibrium

diagram appears as in Fig. 17. As the temperature approaches its critical

value, the specific volumes of the phases in equilibrium become closer, and

at the critical point (K in Fig. 17) they coincide. The diagram in the co-

ordinates P, V has a similar form.

When there is a critical point, a continuous transition can be effected

between any two states of the substance without its ever separating into two

phases. To achieve this, the state must be varied along a curve which passes

round the critical point and nowhere intersects the equilibrium curve. In this

sense, when there is a critical point, the concept of different phases is itself

arbitrary, and it is not possible to say in every case which states have one

phase and which have two. Strictly speaking, there can be said to be two

phases only when they exist simultaneously and in contact—that is, at points

lying on the equilibrium curve.
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It is clear that the critical point can exist only for phases such that the

difference between them is purely quantitative, for example a liquid and a gas

differing only in the degree of interaction between the molecules.

On the other hand, such phases as a liquid and a solid (crystal), or different

crystal modifications of a substance, are qualitatively different, since they

have different internal symmetry (this is discussed further in Chapter XIII).

It is clear that we can say only that a particular symmetry property (symmetry

element) exists or does not exist ; it can appear or disappear only as a whole,

not gradually. In each state the body will have one symmetry or the other, and

so we can always say to which of the two phases it belongs. The critical point

therefore cannot exist for such phases, and the equilibrium curve must either

go to infinity or terminate by intersecting the equilibrium curves of other

phases.

An ordinary phase transition point is not a mathematical singularity of the

thermodynamic quantities of the substance. For each of the phases can exist

(though in a metastable state) beyond the transition point; the thermo-

dynamic inequalities are not violated at that point. At the transition point the

chemical potentials of the two phases are equal: (j,i(P, T) = ^(P, T); but this

point has no special property with respect to either one of the functions

piOP, T) and /i2(P, T). f

Fig. 18

Let us plot in the PK-plane an isotherm of the liquid and gas, i.e. the curve

of P as a function of V in an isothermal expansion of a homogeneous body

{abc and defm Fig. 1 8). According to the thermodynamic inequality (dP/d V)T<

0, P is a decreasing function of V. This slope of the isotherms must continue

t It must be noted, however, that there is some degree of arbitrariness in these statements,

due to an indeterminateness of fi(P, T) in the region of metastability. The metastable state

is one of partial equilibrium, having a certain relaxation time, in this case for the process

of formation of nuclei of a new phase (see §150). The thermodynamic functions in such a

state can therefore be defined only without taking account of these processes, and they can

not be regarded as the analytic continuation of the functions from the region of stability

corresponding to the complete equilibrium states of the substance.
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for some distance beyond their intersections {b and e) with the liquid-gas

equilibrium curve; the segments be and ed of the isotherms correspond

to metastable superheated liquid and supercooled vapour, in which the

thermodynamic inequalities are still satisfied.* If we use the fact that the

points b and e, which correspond to liquid and gas in equilibrium with each

other, have the same ordinate P, it is clear that the two isotherms cannot pass

continuously into each other ; there must be a discontinuity between them. The

isotherms terminate at points (c and d) where the thermodynamic inequality

ceases to hold, i.e. (dP/dV) T becomes equal to zero. By constructing the

locus of the points of termination of the isotherms of the liquid and gas,

we obtain a curve (AKB in Fig. 18) on which the thermodynamic inequalities

are violated (for a homogeneous body), and which is the boundary of a

region in which the body can never exist in a homogeneous state. The regions

between this curve and the phase equilibrium curve correspond to super-

heated liquid and supercooled vapour. It is evident that at the critical point

the two curves must touch, as shown in Fig. 18.

Of the points lying on the curve AKB itself, only one, namely the critical

point K, corresponds to an actually existing state of the homogeneous body

;

this is the only point where the curve reaches the region of stable homoge-

neous states. According to the above discussion, we have in the critical state

(dP/dV)T = 0. (83.1)

It will be shown in §84 that, for such a state to be stable, the second derivative

must also be zero

:

(9
2P/8K2

)T = 0. (83.2)

The conditions (83.1) and (83.2) are two equations in two unknowns, and
can be satisfied only at an isolated point, the critical point of the substance.

It is worth mentioning that the condition (83.1) at the critical point can

also be derived from the following simple considerations. Near the critical

point, the specific volumes of the liquid and the vapour are almost the same;

denoting them by V and V+bV, we can write the condition for equal press-

ures of the two phases as

P(V, T) = P(V+dV, T). (83.3)

Expanding the right-hand side in powers of 6Kand dividing by the small but

finite quantity dV, we have

t A complete-equilibrium isothermal change of state between the points b and e corre-
sponds, of course, to the horizontal straight line be, on which separation into two phases
occurs.
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Hence we see that, when bV tends to zero, i.e. at the critical point, (dP/dV) T
must tend to zero.

In connection with the discussion of metastable states of a liquid, the

following interesting point may be noted. The segment of the isotherm which

corresponds to superheated liquid (be in Fig. 18) may lie partly below the

axis of abscissae. That is, a superheated liquid may have a negative pressure.

Such a liquid exerts an inward force on its boundary surface. Thus the press-

ure is not necessarily positive, and there can exist in Nature states (though

only metastable ones) of a body with negative pressures, as already mentioned

in §12.

§84. Properties of matter near the critical point

There is very good reason to suppose that the boundary of the region where

a homogeneous body cannot exist (the line AKB in Fig. 18) is a line of singu-

larities of the thermodynamic quantities. However, no theoretical analysis

of this problem has yet been made, and the nature of the singularity is un-

known; the theory given in this section is essentially based on the hypothesis

that on the line in question, and in particular at the critical point itself, the

thermodynamic quantities of the substance (as functions of the variables V
and T) have no mathematical singularity, so that this curve is characterised

only by the vanishing of (3P/8F) T.
t In this situation it is impossible to say

which of the results of the discussion will be retained in a correct theory ?nd

which will undergo substantial changes.

With this restriction in mind, let us begin by deriving the conditions for

stability of the state of the substance at the critical point itself. In the deriva-

tion of the thermodynamic inequalities in §21 we started from the condition

(21.1), which led to the inequality (21.2), which is satisfied if the conditions

(21. 3),(21.4) hold. The case (dP/dV) T = of interest here corresponds to the

particular case of the extremum conditions with the equality sign in (21.4):

d*E d*E I d*E \» _
6S2 8F2 [dVdSJ

v
'

J

The quadratic form in (21.2) may now be either positive or zero, depending

on the values of 6S and dV, and so the question whether E-T S+P V has a

minimum requires further investigation.

We must obviously examine the case where in fact the equality sign occurs

in (21.2):

H (^2+2mv bs bv+W* <w = °- (84 '2)

t As functions of the variables P, T, the thermodynamic quantities have a singularity

due to the vanishing of the Jacobian 8(P, T)/d(V, T) of the transformation of variables.
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Using (84.1), this equation may be written

1 fgw+^aKV-,* faS" = (CJT) (6T)2 = 0.&E/ds* [ds2 ^dsdv )
~ d*E/ds* [" ds

Thus the equation (84.2) implies that we must consider deviations from equi-

librium at constant temperature (dT = 0).

At constant temperature the original inequality (21.1) becomes dF+PdV >
0. Expanding 6F in powers of bV and making use of the assumption that

d*F/dV2 = -(dP/dV) T = 0, we find

3l[dV*) T
° +

4\[dV*) T

sv3+4-.l^\ dV*+... <0.

If this inequality holds for all dV, we must have

(d2P/dV2
)T = 0, (d3P/dV*)T < 0. (84.3)

It may be noted that the case of equality in (21.3) (d^/dS2 = 0, or what

is the same thing, Cv
= oo) is impossible in this discussion, since the condi-

tion (21.4) would then be violated. The simultaneous vanishing of the two
expressions (21.3) and (21.4) is also impossible: if we add a further condition

to the vanishing of (dP/dV) T and (8
2P/3F2) T, there result three equations in

two unknowns, which in general have no common solution^

Let us now consider the equation of state of a substance near the critical

point. We shall use the notation*

T-Tc = t, V-Vc
= v,

and consider the properties of the substance when v and t are small. Taking

only the leading terms in the expansion, we write

- (9P/9 V)T = At+Bv\ (84.4)

There is no term proportional to v, since the coefficient of v is the second

derivative of the pressure with respect to the volume, which is zero at the

critical point. The term containing the product tv is always less than At, and
the same is true of the term proportional to t

2
. The term Bv2 must be retained,

on the other hand, since, although both / and v are assumed small, nothing is

assumed regarding their relative magnitude, so that the term Bv2
is not neces-

sarily less than At.

t The vanishing of the derivatives (6^/6 V)T and (aV/aF^at the critical point may
apparently be regarded as confirmed by experimental data. It may not be so certain that

the third derivative (d3P/dV*)T is finite. There are also results which indicate that the

specific heat C„ becomes infinite at the critical point, which the theory described here does
not give reason to assume.

t The v used in this section should not be confused with that in other sections, which
denotes the molecular volume.
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Since (d3P/dV3
) T < at the critical point, the coefficient B must be posi-

tive. Moreover, we must have —(dPjdV) T > at all points near the critical

point which represent a stable state of the substance. This applies, in partic-

ular, to all points with t > (where separation into phases never occurs).

Hence it follows that the coefficient A is also positive. From (84.4) we obtain

for the pressure the expression

P = -Atv-$Bv3
+f(t), (84.5)

where/(f) is a function of t only, which is unimportant for our purposes.

Formula (84.5) determines the form of the isotherms of a homogeneous sub-

stance near the critical point. For t > 0, the isotherm P(v) is a monotonically

decreasing function (curve 1 in Fig. 19). The isotherm (curve 2) which corre-

sponds to the critical temperature (t = 0) has a point of inflection at the crit-

ical point (v = 0).

Finally, below the critical temperature (t < 0), the isotherms (curves 3 and

4) have a maximum and a minimum, between which is a segment with

(dPJdv)
t
> (shown by broken lines in Fig. 19), which does not correspond

to any homogeneous states of matter that actually exist in Nature.
1-

As has been explained in §83, the equilibrium passage from liquid to gas

corresponds to a straight horizontal segment (AD on isotherm 4), AB is the

isotherm of the superheated liquid, and DC that of the supercooled vapour.

Let us determine the abscissae of the points A and D, i.e. the volumes v\

and v2 of liquid and gas in equilibrium.! We can write down the condition

+ In reality we may expect that there will be no curve BC in a theory which correctly
takes account of the singularity of the thermodynamic quantities at the boundary of the
metastable states.

% By the volume we everywhere mean, of course, the volume of a given quantity of the
substance.
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of phase equilibrium pi = p 2 in the form

2

f dp = 0,

1

where the integral is taken along the path of transition from a state of one

phase to a state of the other phase. Let us take the integration along the iso-

therm ABCD. Since for T = constant we have dp = VdP = (V
c
+v) dP, it

follows that
2 2

= [vdP+Vc(P2 -P{) = 0;Jd„
=

j\,

but the pressures of the two phases are equal in equilibrium, Pi = P2 , so that

we have finally

2 t»

f v dP = f v(dP/dv)
t
dv = 0. (84.6)

1 ?i

Substituting the expression (84.4) near the critical point, we find that the

integrand is an odd function of v, and so we must clearly have v\ = — v 2 .

Using now the condition Pi = P2 and formula (84.5), we find

Atvx+\Bvf = -Atvi-^Bvf,

i.c.At+^Bvj 2 = 0. Hence

vi= -v2 = -y/(-3At/B). (84.7)

Thus vi and v 2 are equal in absolute magnitude and proportional to the square

root of T
c
— T. In other words, the phase equilibrium curve in the (T, v) dia-

gram has a simple maximum at the critical point.

It is easy to determine also the volumes vi and v2
' which correspond to the

boundaries of the metastable regions (the points B and C on isotherm 4 in

Fig. 19). At these points

-(dP/dv)
t
= At+Bv* = 0,

whence

v
i = -v% = -y/(-At/B). (84.8)

These volumes are also proportional to the square root of T
c
—T, and smaller

than the volumes vi and v2 for the same temperature by a factor of -y/3-

The heat of transition (latent heat of evaporation) is zero at the critical

point. Since the temperature of the two phases in equilibrium is the same, and
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the volume difference near the critical point is small, we can write the heat of

transition as

q = T{S2-S1) - TcidS/dvUvz-Vi). (84.9)

Since the difference vi— vi is proportional to <\/(T
c
— T), the heat of transition

is proportional to the same square root.

From the formula

Cp Cv
—

(dP/dv)
t

it follows that the specific heat Cp becomes infinite at the critical point as

(dP/dv)
t
vanishes. Substituting (84.4) in this formula, we find

\/(At+Bv*). (84.10)

In particular, for states on the equilibrium curve, v is proportional to \/t,

and so Cr l/t.

§85. The law of corresponding states

Van der Waals' interpolation formula for the equation of state,

is in qualitative agreement with the properties of the liquid-vapour transition

which have been described in the preceding sections. The isotherms deter-

mined by this equation are shown in Fig. 20. They are easily seen to be similar to

Fig. 20

those shown in Fig. 19. Here also horizontal straight segments correspond to

the equilibrium transition from liquid to vapour; the position of these seg-

ments is given by the conditions of equilibrium:

V dP = 0, (85.1)
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where the integral is taken in this case along the van der Waals isotherm from

the beginning to the end of the horizontal segment. Geometrically, this condi-

tion signifies that the areas shown hatched in Fig. 20 for one isotherm are

equal.

The critical temperature, critical pressure and critical volume can be

expressed in terms of the parameters a and b which appear in van der Waals*

equation. To do this, we write the equation as

NT N*a
P =

and equate to zero the derivatives

V-Nb V2

dP\ NT 2N2a

Mr (V-Nb)2 ' Vz

fd
2P \ _ 2NT 6N2a

\dV2
) T

~ (V-Nb)* yi ~ '

These three equations give

Tc =Af V.-3M, J>.-4£. (85.2)

We now use instead of J, P, Fthe quantities

T = T/Tc , P' = P/Pc, V = VfVc . (85.3)

These are called the reduced temperature, pressure and volume, and are all

equal to unity at the critical point.

If we express T, P, V in van der Waals' equation in terms of T, P', V, we

obtain

(
p'+-^)(3F'- 1

) = 8r - <85 -4)

This is the reduced van der Waals' equation. It contains only V',P' and 7", and

not quantities pertaining to a given substance. Equation (85.4) is therefore

the equation of state for all bodies to which van der Waals' equation is

applicable. The states of two bodies for which their values of 7", P', V are

equal are called corresponding states (clearly the critical states of all bodies are

corresponding states). It follows from (85.4) that, if two bodies have equal

values of two of the three quantities 7", P', V, then the values of the third

quantity are also equal, i.e. they are in corresponding states (the law of corre-

sponding states).

The "reduced" isotherms P' = P'(V) given by equation (85.4) are the same

for all substances. The positions of the straight segments which give the

liquid-gas transition points are therefore also the same. We can therefore
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conclude that for equal reduced temperatures the following quantities must

be the same for all substances: (1) the reduced saturated vapour pressure, (2)

the reduced specific volume of the saturated vapour, (3) the reduced specific

volume of the liquid in equilibrium with the saturated vapour.

The law of corresponding states can also be applied to the heat of transi-

tion from the liquid to the gaseous state. Here the "reduced heat of evapora-

tion" must be represented by a dimensionless quantity, g/T
c

. We can there-

fore write 1
"

q/Tc = f(T/Tc). (85.5)

In conclusion, we may note that the law of corresponding states does not

apply only to van der Waals' equation. The parameters of a specific sub-

stance disappear when reduced quantities are used in any equation of state

containing only two such parameters. The law of corresponding states, taken

as a general theorem not pertaining to any specific form of the equation of

state, is somewhat more accurate than van der Waals' equation, but its

applicability is in general very restricted.

t At temperatures considerably below the critical temperature, the ratio q/Te is approxi-

mately 10 (where q is the molecular heat of evaporation).



CHAPTER IX

SOLUTIONS

§86. Systems containing different particles

Hitherto we have considered only bodies consisting of identical particles.

Let us now go on to discuss systems which contain different particles. These

include all kinds of mixtures of more than one substance ; if the mixture con-

tains much more of one substance than of the others, it is called a solution

of the other substances in the predominant substance (the solvent).

The number of independent components of the system customarily sig-

nifies the number of substances whose quantities in a state of complete equi-

librium can be specified arbitrarily. All the thermodynamic quantities for a

system in complete equilibrium are entirely determined, for example, by the

temperature, the pressure and the numbers of particles of the independent

components. The number of independent components may not be the same

as the total number of different substances in the system if a chemical reac-

tion can occur between the latter; if such a system is in partial equilibrium

only, the determination of its thermodynamic quantities requires, in general,

a knowledge of the amounts of all the substances present in it.

It is easy to generalise the results of §24 to bodies consisting of different

substances. Firstly, all the thermodynamic quantities must be homogeneous

functions of the first order in all the additive variables—the numbers of the

different particles and the volume.

Next, in formulae (24.5), (24.7)-(24.9) the term {j, diV must now be replaced

by the sum £ (x
{
dN

t
, where Nt

is the number of particles of the ith kind and

the quantities /^ are called the chemical potentials of the corresponding

substances. Accordingly, in formulae (24.6) and (24.10) the chemical poten-

tial and the number of particles must now have the suffix /. In order to find

the chemical potential of any substance in the mixture we must differentiate

E, F, or Wwith respect to the corresponding number of particles. In par-

ticular

IH = (d0ldNt)p, t. (86.1)

The chemical potentials are then expressed as functions of the pressure, the

temperature and the concentrations, i.e. the ratios of the numbers of particles

of the different substances. These numbers of particles can appear in
i
u

i
only

273
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as ratios, since is a homogeneous function of the first order in the N
{
, and

the chemical potentials must therefore be homogeneous functions of zero

order in these variables.

From the fact that is a homogeneous function of the first order in the

N
it we have, using Euler's theorem,

= £ N^/dNi = £ îf (86.2)
i i

which is a generalisation of the formula = Nfi.

For the potential Q we now have

Q = F-Z ^Ni

and hence again Q = —PV. The last formula ceases to be valid only for bodies

in an external field, when the pressure in different parts of the bodies is differ-

ent.

The results of §25 can also be generalised immediately : the conditions of

equilibrium for a system in an external field require the temperature and also

the chemical potential of each component to be constant throughout the

system:

Hi = constant. (86.3)

Finally, the Gibbs distribution for systems consisting of different particles

becomes

wnNxNt . .
. = exp i - ! \ , (86.4)

an obvious generalisation offormula (35.2).

§87. The phase rule

Let us now consider a system consisting of different substances and com-

prising r phases in contact (each phase containing, in general, all the sub-

stances).

Let the number of independent components in the system be n. Then each

phase is described by its pressure, temperature and n chemical potentials.

We have seen in §81 that the condition for equilibrium of phases consisting

of identical particles is that temperature, pressure and chemical potential

should be equal. It is evident that, in the general case of more than one com-

ponent, the phase equilibrium condition will be that the temperature, press-

ure and each chemical potential are equal. Let T and P be the common
temperature and pressure of the phases. In order to distinguish the chemical

potentials belonging to different phases and components we shall write them

with a roman index for the phase and an arabic suffix for the component.
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Then the phase equilibrium conditions may be written

A*i = A*i = • • = /*i»

l4 = j"" = • • • - /4>

l# I _ ,.II _ = ur

(87.1)

Each of these potentials is a function of n+\ independent variables: P, T,

and n-\ concentrations of different components in the phase concerned

(each phase contains n independent numbers of particles of different kinds,

giving n— 1 independent ratios).

The conditions (87.1) form a set of n(r- 1) equations. The number of un-

knowns is 2+r(n - 1). If these equations have solutions, the number of equa-

tions must certainly not be greater than the number of unknowns, i.e.

n(r-l)=s 2+r(«-l), or

r < n+2. (87.2)

In other words, in a system consisting of n independent components, not

more than n+2 phases can be in equilibrium simultaneously. This is called

Gibbs* phase rule. We have seen a particular case of it in §81 :
when there is

one component, the number of phases that exist in contact at one time cannot

exceed three.

If the number r of coexisting phases is less than n+2, n+2- r of the varia-

bles in equations (87.1) can obviously take arbitrary values. That is, we can

arbitrarily vary any n+2-r variables without destroying the equilibrium;

the other variables must, of course, be varied in a definite manner. The num-

ber of variables which can be arbitrarily varied without destroying the equi-

librium is called the number of thermodynamic degrees offreedom of the sys-

tem. If this is denoted by/, the phase rule may be written

f=n + 2-r, (87.3)

where/can not, of course, be less than zero. If the number of phases has its

maximum possible value n+2, then/ = 0, i.e. all the variables in equations

(87.1) have definite values, and none of them can be varied without destroy-

ing the equilibrium and causing one of the phases to disappear.

§88. Weak solutions

We shall now consider (in §§88-93) the thermodynamic properties of weak

solutions, i.e. those in which the number of molecules of the dissolved sub-

stances (the solutes) is much less than the number of solvent molecules. Let

us first take the case of a solution with only one solute; the generalisation to

a solution with more than one solute is immediate.
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Let N be the number of solvent molecules in the solution, and n the number
of solute molecules. The ratio c = n/N is the concentration of the solution,

and from the above hypothesis c <*: 1

.

Let us derive an expression for the thermodynamic potential of the solu-

tion. Let O(P, T, N) be the thermodynamic potential of the pure solvent

(containing no solute). According to the formula = N/i (which is

valid for pure substances) it. can be written O = Nfx (P, T), where n {P, T)
is the chemical potential of the pure solvent. Let a = a(P, T, N) denote the

small change which would occur in the thermodynamic potential if one mole-
cule of solute were added to the solvent. Since the solution is assumed weak,
the solute molecules in it are comparatively far apart, and their interaction is

therefore weak. Neglecting this interaction, we can then say that the change
in the thermodynamic potential when n molecules are added to the solvent is

hoc. But the expression 0o+n<x. thus obtained fails to take account of the fact

that all the molecules of the solute are identical. This is the expression which
would be obtained from formula (31.5) if all the solute particles were regarded
as different in calculating the partition function. As we know (cf. (31.7)), the

partition function thus calculated must in fact be divided by «!. f

This leads to an additional term r log n ! in the free energy, and therefore

in the potential 0. Thus

= Nfx (P, T)+ noc(P, T,N)+ Tlognl

Next, since n is itself a very large number, though small in comparison with

N, we can write log n ! = n log (n/e) in the last term. Then

= N[x + n[<z+T log (nfe)]

= N^+ nT log [(n/e)e*l T].

We now take into consideration the fact that must be a homogeneous
function of the first order in n and N. For this to be so it is clearly necessary

that the argument of the logarithm should be of order zero in n and N
y
and

hence e*
IT must be inversely proportional to N, i.e. must be of the form

f(P, T)/N. Thus
= Nfio+ nT log [(n/eN)f(P, T)].

Defining a new function y(P, T) = T log f(P, T), we finally have for the ther-

modynamic potential of the solution the expression

= Nfi (P, T)+nT log (n/eN)+ ny(P, T). (88. 1)

The assumption, made at the beginning of this section, about the addition

of a term of the form hoc to the potential of the pure solvent amounts

t Here we neglect quantum effects, which is always permissible for a weak solution, as

it is for a sufficiently rarefied gas.
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essentially to an expansion in powers ofn, retaining only the leading terms. The

term in which is of the next order in n is n2fx(P, T, AT); but, since must be

a homogeneous function ofiVand «, /i(i\ T, N) must be inversely proportional

to N, i.e. /i(P, T, N) = fi(P, T)/2N, where is a function ofP and T only.

Thus the thermodynamic potential of a weak solution as far as the second-

order terms is

= Nfi (P, T)+nT log (n/eN)+ mp(P, T)+ (n2l2N)0(P, T). (88.2)

For a weak solution of more than one substance, the thermodynamic

potential will obviously be, instead of (88.1),

= Npo+ Z "i^log (nJelSO+Z nm , (88.3)
i i

where the n
{
are the numbers of molecules of the various solutes, and the

y)t
(P, T) are various functions. The expression (88.2) is similarly generalised to

= Npo+Z tiiTlog (Hi/eAO+E «iVi+£ (nink/2N)0ik . (88.4)
t t i, ft

From (88.1) we can easily find the chemical potentials for the solvent (//)

and the solute (/x') : the former is

p = d0/dN =
fj,
-Tn/N = no-Tc, (88.5)

and the latter is

H' = d0/dn = Tlog (n/N)+y) = Tlog c+xp. (88.6)

§89. Osmotic pressure

In this and the following sections we shall discuss some properties of solu-

tions, again assuming them weak and therefore using the results of §88.

Let us suppose that two solutions of the same substance in the same solvent
but with different concentrations c x and c2 are separated by a partition through
which solvent molecules can pass but solute molecules cannot (a semi-per-
meable membrane). The pressures on the two sides of the membrane will then
be different; the argument in §12 to prove the equality of pressures is invalid
here, because of the presence of the semi-permeable membrane. The difference
between the pressures is called the osmotic pressure.

The condition of equilibrium between the two solutions is (apart from the
equality of their temperatures) that the chemical potentials of the solvent in
them should be equal. The chemical potentials of the solute need not be the
same, since the semi-permeability of the membrane means that there is equi-
librium only with respect to the solvent.
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Denoting the pressures in the two solutions by Pi and P2 , and using the

expression (88.5), we obtain the equilibrium condition in the form

[x (Pi, T)- ClT = /i (P2 , T)-c 2T. (89.1)

The pressure difference P2—Pi = /IP (i.e. the osmotic pressure) is relatively

small for weak solutions, and so we can expand {J,o(P2 , T) in powers of

AP, retaining only the first two terms

:

/
a (P2 , T) =

i
ao(Pi, T)+AP.dfi /dP.

Substitution in (89.1) gives

AP-dfio/dP = (c2 -ci)r.

But dfio/dP is just the molecular volume v of the pure solvent. Thus

AP = (a-c^T/v. (89.2)

In particular, if there is pure solvent on one side of the membrane (ci = 0,

c2 = c), the osmotic pressure is

AP = cT/v = nT/V, (89.3)

where n is the number of solute molecules in a volume V of solvent; since the

solution is weak, Fis almost exactly equal to the total volume of the solution.

Formula (89.3) is called van 't Hoff's formula. It should be pointed out that

this formula is applicable to weak solutions independently of the particular

solvent and solute concerned, and that it resembles the equation of state of an

ideal gas. The gas pressure is replaced by the osmotic pressure, the gas volume

by the solution volume, and the number of particles in the gas by the number

of molecules of solute.

The generalisation of formulae (89.2) and (89.3) to the case of solutions of

more than one substance is obvious : in this case the osmotic pressure is the

sum of the osmotic pressures of the various solutes, i.e. the pressures which

would exist if each solute were dissolved alone.

§90. Solvent phases in contact

In this section we shall consider the equilibrium of two solvent phases in

contact, with a certain amount of the same substance dissolved in each. The

equilibrium conditions are (apart from the equality of pressures and tempera-

tures) the equality of the chemical potentials of the solvent and those of the

solute in the two phases. Here we shall use the first condition, writing it in the

form

fil(P, T)-c{T = ^(P, T)-cnT, (90.1)
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where c
l3 cu are the concentrations and ^uj, (j}Q

l the chemical potentials of the

two phases of the pure solvent.

It must be noted that the system considered here, consisting of two compo-
nents and two phases, has two thermodynamic degrees of freedom. Of the
four quantities P, T, cv cu , therefore, only two may be chosen arbitrarily; if

we choose P or T and one of the concentrations, for example, then the other
concentration has a definite value.

If the two solvent phases contained no solute, the condition for their equi-
librium would be

rf(Po, T ) = fil
l(P , To), (90.2)

the temperature and pressure of both phases being denoted by T and P .

Thus, whereas in the equilibrium of pure solvent phases the relation be-
tween pressure and temperature is given by equation (90.2), when any sub-
stance is dissolved in these phases the relation is given by equation (90.1). For
weak solutions the two equations are not greatly different.

Let us now expand ^(P, T) and ^(P, T) in equation (90.1) in powers of
P-Po = AP and T-T = AT, where P and T are the pressure and tempera-
ture at some point on the equilibrium curve of the pure solvent phases close
to a given point P, Ton the equilibrium curve ofthe solution phases. Retaining
in the expansion only the first-order terms in AP and AT, and using (90.2), we
have from (90.1)

But - dfio/dT and d/i /dP are just the entropy s and the volume v of the pure
solvent (per molecule). Adding the suffix denoting the phase, we have

-fo-Jii) dT+^-Vu) AP = (Cl -cu)T. (90.3)

According to formula (81.5), we have (sn -s{)T = q, where q is the latent
heat of transition of the solvent from phase I to phase II. Thus (90.3) may be
written

(qmAT+^-v^AP = (Ci -cu)T (90.4)

Let us examine two particular cases of this formula. We first choose the
point P

, To such that P = P. Then AT will be the horizontal distance be-
tween the two curves, i.e. the change in the temperature of transition between
the two phases when the solute is added, or the difference between the transi-
tion temperature T (at pressure P) when both phases are solutions and the
transition temperature T (at the same pressure) for the pure solvent Since
AP = here, (90.4) gives

AT=T2(cI -cn)/q. (90.5)
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If one of the phases (I, say) is the pure solvent (cn = 0, cx = c), then

AT = T*c/q. (90.6)

This formula determines, in particular, the change in the freezing point when

the solute is added, if the solute is insoluble in the solid phase; the two phases

are then the liquid solution and the solid solvent, and AT is the difference

between the temperature at which the solvent freezes out of the solution and

that at which the pure solvent freezes. On freezing, heat is liberated, i.e. q

is negative. Hence AT < also ; i.e. if the pure solvent freezes out, the addi-

tion of solute lowers the freezing point.

The relation (90.6) also determines the change in the boiling point when

the solute is added, if the solute is not volatile; the two phases are then the

liquid solution and the solvent vapour, and AT is the difference between the

temperature at which the solvent boils off from the solution and that at which

the pure solvent boils. Since heat is absorbed in boiling, q > and therefore

AT > 0, i.e. the boiling point is raised by the addition of the solute.

All these consequences of formula (90.6) are fully in accordance with

Le Chatelier's principle. For example, let a liquid solution be in equi-

librium with the solid solvent. If the concentration of the solution is increased,

then by Le Chatelier's principle the freezing point must be lowered so that

part of the solid solvent is added to the solution and the concentration is

thereby lowered. The system as it were counteracts its disturbance from the

equilibrium state. Similarly, if the concentration of the liquid solution in equi-

librium with the solvent vapour is increased, the boiling point must be raised

so that part of the vapour condenses into the solution and the concentration

is lowered.

Let us now consider another particular case of formula (90.4), choosing the

point P , To so that T = T . Then AP is the vertical distance between the two

curves, i.e. the difference between the pressure of the two solution phases in

equilibrium and that of the two pure solvent phases in equilibrium (at the

same temperature). Here AT = 0, and from (90.4) we have

AP = r(<i-Cn)/(oi-"ii). (90.7)

The ratio

APIAT = q/T(vj--vn)

is in accordance with the Clapeyron-Clausius formula (applied to the pure

solvent), as it should be, since AP and AT are relatively small.

Let us apply formula (90.7) to an equilibrium between liquid and gaseous

phases. Then the volume of one phase (the liquid) may be neglected in com-

parison with that ofthe other, and (90.7) becomes

AP = T(Cl -cu)/v, (90.8)
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where v is the molecular volume of the gas phase (I). Noting that Pv = T,

and substituting to the same accuracy P « P (where P is the saturated

vapour pressure over the pure solvent), we can write this formula as

AP = Poicj-cu). (90.9)

If the gas phase is the pure solvent vapour (c
x
= 0, cu = c), then (90.9)

b ecomes
AP/P =-c, (90.10)

where c is the concentration of the solution. This formula gives the difference

between the saturated vapour pressure of the solvent over the solution (P)

and over the pure solvent (P ). The relative decrease in the saturated vapour

pressure when the solute is added is equal to the concentration of the solution

(RaouWslaw)*

§91. Equilibrium with respect to the solute

Let us now consider a system consisting of two solutions in contact, the

solutions being of the same substance in different solvents (for instance, in

two immiscible liquids), and their concentrations being denoted by Ci and c%.

The equilibrium condition for this system is that the chemical potentials

of the solute in the two solutions should be equal. Using (88.6), we can write

this condition in the form

Tlog ci+yi(p, T) = Tlog c2 +y> 2(p, T).

The functions tp1 and ^>2 are, of course, different for the different solvents.

Hence we find

Cl/c2 = e(v»-vi)/T (91 j)

The right-hand side of this equation is a function of P and T only. Thus the

solute is distributed between the solvents in such a way that the ratio of con-

centrations is always the same (forgiven pressure and temperature), independ-

ently of the total quantities of the solute and solvents (the distribution law).

The same law obviously applies to a solution of one substance in two adjacent

phases of the same solvent.

Now let us consider the equilibrium between a gas (assumed ideal) and a

solution of it in a liquid or solid solvent. The equilibrium condition, i.e. the

equality of the chsmical potentials of the pure gas and the dissolved gas, can

be written (using (42.6) and (88.6)) in the form

Tlog c+xp(P
y T) = TlogP+x(T),

t It will be remembered that c denotes the molecular concentration (ratio of numbers of
molecules, n/N).
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whence

c = pe (z-v)lT. (91.2)

The function y)(P, T) describes the properties of the liquid (or solid) solu-

tion. At low pressures, the properties of a liquid depend only very slightly on
the pressure. Hence the dependence of ip(P, T) on the pressure is unimportant,

and we can suppose that the coefficient of P in (91.2) is a constant independ-
ent of the pressure:

c = PX constant. (91.3)

Thus, when a gas dissolves, the concentration of the (weak) solution is pro-

portional to the gas pressure (Henry's law)?

PROBLEM
Find the variation of concentration with height for a solution in a gravitational field.

Solution. We apply the equilibrium condition (86.3) in an external field, writing it fo-

the solute: Tlog c+ip(P, T)+ mgz = constant, since the potential energy of a solute moler
cule in the gravitational field is mgz (z being the height, and m the mass of the molecule).

We differentiate this equation with respect to z, noting that the temperature is constant by
one of the conditions of equilibrium

:

T dc dw dP „

c dz dP dz

Since the volume of the solution is

dp- N dP
+
"dP

(substituting for<£ the expression (88.1)), the quantity dy>/dP may be called the volume v'

per molecule of solute. Hence
T dc ,dP .— -7-+mg+v' -r- = 0.
c dz dz

In order to find P as a function of z, we use the equilibrium condition for the solvents

vdP/dz+Mg = 0,

where v = dfi /dP is the molecular volume andM the mass of a solvent molecule. Substitut-

ing dP/dz in the previous condition, we find

T dc *, v'

— -5

—

hmg-Mg— = 0.
c dz v

If the solution may be regarded as incompressible, i.e. v and v' are constants, this gives

c __ c e -(qz\T)(m-v' Mlv)

^

where c is the concentration of the solution when z = 0, i.e. the usual barometric formula

corrected in accordance with Archimedes' principle.

t It is assumed that the gas molecules dissolve unchanged. If they dissociate (as in the

dissolution of hydrogen H2 in certain metals), the dependence of the concentration on the

pressure is different; see §104, Problem 2.

% In this condition the term involving the concentration (-Tdc/dz) is small and may be

omitted; in the condition for the solute, it contained c in the denominator and was therefore

not small.



§92 Evolution of Heat and Change of Volume on Dissolution 283

§92. Evolution of heat and change of volume on dissolution

The process of dissolution is accompanied by the evolution or abso rption

of heat. Let us now calculate the quantity of heat involved, and first deter-

mine the maximum work which can be done as a result of the dissolution

process.

Let us suppose that the dissolution occurs at constant pressure and tem-

perature. In this case the maximum work is determined by the change in the

thermodynamic potential. Let us calculate it for a process in which a small

number bn of solute molecules are dissolved in a solution already of concen-

tration c. The change b& in the total thermodynamic potential of the system

is equal to the sum of the changes in the potentials of the solution and the

pure solute. Since bn molecules of solute are added to the solution, the change

in its thermodynamic potential is

^soi=^f bn = [x'bn,

where
fj,'

is the chemical potential of the solute in the solution. The change in

the potential @ ' of the pure solute is

d& '

d0°'
=

~~drt
bn = "^o' 6"'

since the number of molecules of it decreases by bn, [i ' being the chemical

potential of the pure solute. The total change in the thermodynamic potential

in this process is therefore

t0 = bn(fi'-fj '). (92.1)

We have now only to substitute fi' from (88.6):

b& = — bn(fj
' —ip— T log c)

or

b& = - Tbn log
Co(P; T)

, (92.2)

where

c (P, T) = ei"°'-v)IT (92.3)

is the solubility, i.e. the concentration of a saturated solution (that is, one
which is in equilibrium with the pure solute). This follows immediately from
the fact that in equilibrium must have a minimum, i.e. we must have
b& = 0. Formula (92.3) can also be derived directly from the condition for

equilibrium between the solution and the pure solute, i. e. from the equality

of the chemical potentials of the pure solute and that in the solution.
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It should be noted that c may be identified with the concentration of the

saturated solution only if c is small, since all the formulae in the last few
sections are applicable only to small concentrations.

The expression obtained gives the required quantity of work: \b&\ is the

maximum work which can be done by the dissolution of bn molecules, and is

also the minimum work which is needed to separate bn molecules of solute

from a solution of concentration c.

There is now no difficulty in calculating the heat bQp absorbed in dissolu-

tion at constant pressure (if 6QP < 0, this means that heat is evolved). The
quantity of heat absorbed in a process which occurs at constant pressure is

equal to the change in the heat function (§14). Since, on the other hand,

W t) p
>

we have*

«,= _„(_*, »^. (92.4)

Substituting the expression (92.2) in this formula, we find the required quan-

tity of heat:

bQP = T*bn 3 log co/dT. (92.5)

Thus the quantity of heat involved in the dissolution process is related to the

temperature dependence of the solubility. We see that bQp is simply propor-

tional to bn; this formula is therefore applicable also to the dissolution of any

finite quantity of substance (so long as the solution remains weak, of course).

The quantity of heat absorbed in the dissolution of n molecules is

QP = T2nd log co/dT. (92.6)

We may also determine the change in volume on dissolution, i.e. the differ-

ence between the volume of the solution and the sum of the volumes of the

pure solute and the solvent in which it is dissolved. Let us calculate this

change bV in the dissolution of bn molecules. The volume is the derivative

of the thermodynamic potential with respect to the pressure. The change in

volume is therefore equal to the derivative, with respect to pressure, of the

change in the thermodynamic potential for a given process, i.e.

bV = ^b&. (92.7)

t The corresponding formula for the quantity of heat in a process which occurs at con-

stant volume is
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Substituting d0 from (92.2), we find

bv= -TSn^r log co. (92.8)
or

In conclusion, it may be noted that formula (92.6) is in accordance with

Le Chatelier's principle. Let us suppose, for example, that QP is negative,

i.e. that heat is evolved on dissolution, and let us consider a saturated solu-

tion. If this is cooled, then by Le Chatelier's principle the solubility must

increase so that more dissolution occurs. Heat is then evolved, i.e. the system

as it were counteracts the cooling which disturbs its equilibrium. The same

follows from (92.6), since in this case dc /cT is negative. Similar arguments

show that formula (92.8) is also in accordance with Le Chatelier's prin-

ciple.

PROBLEMS

Problem 1. Find the maximum work that can be done in the formation of a saturated

solution.

Solution. Before dissolution, the thermodynamic potential of the pure solvent was

N/n , and that of the pure solute n[i '. The potential of the whole system was <X> X= Nfi + nfi '.

After dissolution, the thermodynamic potential <P 2
= Nfi +nT log (n/eN)+ny). The maxi-

mum work is

= -nT log (n/eN)+ h(/V -VO

= nT log (ec /c);

this may also be derived by integration of (92.2). If a saturated solution is formed, i.e.

c = c and n = Nc = Nc , then

^max = nT= NcQT.

Problem 2. Find the minimum work which must be done to raise the concentration of

a solution from c x to c2 by removing some of the solvent.

Solution. Before the removal, the thermodynamic potential of the solution was

0>
x
= JV> +Nc^T log {cJe)+Ncj\p (the number of solute molecules was Nclf where N was

the original number of solvent molecules). In order to raise the concentration of the solu-

tion to c 2 , we must remove from it N(\ - cjc 2) solvent molecules. The sum of the thermo-

dynamic potentials of the remaining solution and the solvent removed gives &2 — N/i +
Nc xT log (c zle)+Nc 1

ip. The minimum work is

*mi„ = <P8 -<Pi = iVCiriog (cJCl).

§93. The mutual interaction of solutes

Let us consider a weak solution of two diiferent substances in the same

solvent. If each substance were dissolved separately, their solubilities (the

concentrations of their saturated solutions) would be c i and c02* ; let the

t It is assumed, of course, that the saturated solution is still so weak that all the formulae

used remain valid.
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solubilities of the two substances when both are present be c ' = c +bc
and c02 = c

02+ dc
02 . We shall determine the relation between dc i and <5c02 .

To solve this problem we must obviously take account of those terms in the
thermodynamic potential which contain the concentrations of both solutes.
The second-order terms include one of this type. The thermodynamic poten-
tial of the solution of the two substances is, from (88.4),

= Nfio+rnTlog (n 1/eN)+ n 2T log (n 2/eN)-i-n 1tp 1+ n2rp2+

+WPu/N+Wp22/N+ nin2p12/N

as far as second-order terms. The chemical potentials of the two solutes are

/V = 80/8«i = Tlog ci+yi+c 1£11+c2/512 ,

fi2
' = d&/dn2 = riogc2+ya+ cij3i2+C2j822,

where a = n x/N, c2 = n 2/N. Let fxQ1
' and fi02

' be the chemical potentials of
the pure solutes. The solubilities c01 and c02 are determined from the condi-
tion of equilibrium for each of the pure solutes with that solute in solution, i.e.

A*oi' = riog coi+Vi+Ci/Su,

fi02 = Tlogc02 +ip 2+c2p22 .

The solubilities c01
' and c

Q2 are determined from the equilibrium conditions

:

i"oi' = rl°S c01'+y> 1+c1p11+c 2Pi2, m 3)

Subtracting (93.2) term by term from (93.3) and assuming that the changes
in solubility are small (<fci <sc c i, 6c02 <k c02), we have approximately

Tdcoi/coi = —c02{312 , Tdc02/co 2 = — c i/Si2 ,

since log c ' — log c % dc /c . Hence

dcoi = dcoz, (93.4)

i.e. the changes in solubility of the two substances are equal.

Similarly we can determine the change in the saturated vapour pressures of
two substances in the same solution. Let Pi and P2 be the saturated vapour
pressures of the two substances above solutions of concentrations c x and c2 ;

let P
x

' =Pi+6P1 , P2
' — p2+dp2 be the vapour pressures of the same sub-

stances above the solution of both together (with the same concentrations).

The chemical potentials of the two substances in the vapour are Tlog Px+
Xi (T) and T log P2+%2{T). The pressures Pi and P2 are therefore given by
the relations

T\ogPx+ yA{T) = riogd+vi+ci/Su,

riog p2+%2(r) = riog c2+ V2+c2£22 ,
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andP/andPj/by

riog/Y+%1 = riogci+yi+ci0ii+c20i2,

ri0gP2
' + Z2 = ri0gC2+^2+ C2iS22+ Ci/3i2.

(93.6)

Subtracting (93.5) from (93.6) and assuming the changes bP x and dP2 small,

we find

TbPx/Pt = c2p 12 , T6P2/P2 = Gifts,

whence
<5Pi/6P2 = PiC2/P2C!. (93.7)

Thus the relative changes in pressure of saturated solutions, dPi/Pi and

SP2/P2, are inversely proportional to the corresponding concentrations ci

and c2 .

§94. Solutions of strong electrolytes

The method of expanding the thermodynamic quantities in powers of the

concentration used in the preceding sections is completely inapplicable in the

important case of solutions of strong electrolytes, that is, substances which

dissociate almost completely into ions when dissolved. The slow decrease of

the Coulomb interaction forces between ions with increasing distance leads to

terms proportional to a power of the concentration lower than the second

(namely, the 3/2 power).

It is easy to see that the problem of determining the thermodynamic quan-

tities of a weak solution of a strong electrolyte reduces to the problem of a

completely ionised gas discussed in §75. This result may be derived by start-

ing from the fundamental statistical formula (31.5) for the free energy. The

integration in the partition function will be carried out in two stages, first

integrating over the co-ordinates and momenta of the solvent molecules.

Then the partition function becomes

where the integration is now taken only over the phase space of the electro-

lyte particles, and F(p, q) is the free energy of the solvent with the ions

"fixed" in it, the ion co-ordinates and momenta being regarded as parame-

ters. We know from electrodynamics that the free energy of a system of charges

in a medium (of given volume and temperature) can be deduced from the

energy of the charges in empty space by dividing the products of each pair

of charges by the dielectric constant e of the medium. 1" The second step in

t This assumes that the distances between ions are large compared with molecular

dimensions, but we know from §75 that in the approximation considered the main contri-

bution to the thermodynamic quantities comes in fact from these distances.



\3/2

288 Solutions §94

calculating the free energy ofthe solution is therefore identical with the calcu-

lations given in §75.

Thus the required contribution of the strong electrolyte to the free energy

of the solution is given, according to (75.12), by

3e*l*\TV) (£
Wa2a

)

where the summation is over all the kinds of ion in the solution; in accord-

ance with the notation used in this chapter, na denotes the total number of
ions of the ath kind (in the whole volume of the solution). The same express-

ion gives the contribution to the thermodynamic potential for given temper-

ature and pressure. Putting V ^ Nv, where v(P, T) is the molecular volume
of the solvent, we can write the thermodynamic potential of the solution in

the form

O = Nfi + 5>ariog (nJeN)+ £«aVa
-

_2e* (7ty'2

(
Znaza^

3eV2\vT) \ N J '

(94.1)

From this we can find, by the usual rules, any of the thermodynamic prop-
erties of the electrolyte solution. For example, to calculate the osmotic press-

ure we write chemical potential of the solvent as

As in §89, we find from this the osmotic pressure (at a boundary with the pure

solvent)

The heat function of the solution is

From this we can find the "heat of solution" Q which is liberated when the

solution is diluted (at constant P and T) with a very large amount of solvent

(so that the concentration tends to zero). This quantity of heat is given by the

change in the heat function during the process. The terms linear in the number
of particles obviously give zero difference, and we find from (94.4)

Q _ &W* N tln^V'
2

T>± (
l

) (94 5)
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The only condition for the above formulae to be valid is that the concentra-

tion should be sufficiently small. For the fact that the electrolyte is strong

means that the energy of attraction between ions of different kinds is always

less, than T. Hence it follows that the interaction energy is certainly small

compared with T at distances large compared with molecular distances. But

the condition n « ATfor the solution to be weak means precisely that the mean

distance between ions is large in comparison with molecular dimensions. Thus

this condition necessarily implies that the condition of weak interaction

n/V «: (eT/z2e2)S

(cf. (75.2)) is satisfied, and this is the basis of the approximations used in §75.

PROBLEM

Find the change in the solubility (assumed small) of a strong electrolyte when a certain

quantity of another electrolyte is added to the solution (all the ions of the second electrolyte

being different from those of the first).

Solution. The solubility (i.e. the concentration of a saturated solution) of the strong

electrolyte is given by the equation

fi,(P, T) = £ "./*« = ^Z v> log (".W+Z v«Va-
a a a

Here n* is the chemical potential of the pure solid electrolyte, and va the number of ions

of the ath kind per molecule of the electrolyte. When other ions are added to the solution,

the chemical potentials of the original ions are changed because of the change in the sum
V/!4zj

2
, which must include all ions present in the solution. Having defined the solubility

c by n„/N = vac , we find the change in it by varying the expression (1) for given P and 7":

2f 3 ' 2v1 ' 2r 3/W-,y v„

'

The sum following 6 includes only the added kinds of ion. It should be noted that the solu-

bility is raised under the conditions assumed.

§95. Mixtures of ideal gases

The additivity of the thermodynamic quantities (such as energy and en-

tropy) holds good only so long as the interaction between the various parts of

a body is negligible. For a mixture of several substances, e.g. a mixture of

several liquids, the thermodynamic quantities are therefore not equal to the

sums of the thermodynamic quantities for the individual components of the

mixture.

An exception is formed by mixtures of ideal gases, since the interaction

between their molecules is by definition negligible. For example, the entropy
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of such a mixture is equal to the sum of the entropies which each of the gases

forming the mixture would have if the other gases were absent and the volume
of the one gas were equal to that of the mixture, its pressure therefore being
equal to its partial pressure in the mixture. The partial pressure P

i
of the zth

gas is expressed in terms of the pressure P of the whole mixture by

Pi = NtT/V = NiP/N, (95.1)

where N is the total number of molecules in the mixture, andN
t
the number of

molecules of the rth gas. Hence, by (42.7), the entropy of a mixture of two
gases is

S = N! log {eVjN1)+N2 log (eV/Nd-Njfi'(T)-Ntf2'(T), (95.2)

or, from (42.8),

S = -Ni log P!-N2 log P2-NlXi(T)-N2x2'(T)

= -(N!+N2) log P-Nx log (N!/N)-N2 log (N2/N) -

-Ni%x'{T)-N2%2\T). (95.3)

The free energy of the mixture is, by (42.4),

F= -N1Tlog(eVlN1)-N2T\og(eVIN2)+
+N1f1(T)+N2f2(T), (95.4)

and similarly (42.6) gives for the potential

= N1TlogP1+N2TlogP2+N1x 1(T)+N2%2(T)

= iv1(riog Jp+xi)+iv2(riogP+z2)+

+^!riog (ATi/JV^+A^riog (Ni/N). (95.5)

This expression shows that the chemical potentials of the two gases in the

mixture are

IH = TlogPx+ %! = T log P+%!+ T log (NJN),

H 2 = TlogP2+% 2 = T log P+ X2+ T log (N2/N),
(95 '6)

i.e. e\-n has the same form as the chemical potential of a pure gas with press-

ure P\ orP2 .

It may be noted that the free energy (95.4) of a mixture of gases has the

form

F = F!(Nlt V, T)+F2(N2 , V, T),

where F\ and F2 are the free energies of the two gases as functions of the num-
ber of particles, volume and temperature. No similar formula is valid for the

thermodynamic potential, however: the potential of the mixture has the

form

= Q^Nu P, T)+ 2(N2 , P, T)+N1T\og (JVi/tf)+Wlog (N2/N).
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Let us suppose that we have two different gases with numbers of particles

Ni and N2 in vessels of volumes Vx and V2 at the same temperature and press-

ure, the two vessels then being connected and the gases mixed. The volume

of the mixture becomes Vx+ V2 , and the pressure and temperature obviously

remain the same. The entropy, however, changes : before mixing, the entropy

of the two gases is equal to the sum of their entropies,

So = Nx log (eV1/N1)+N2 log (eV2/N2)-

~N^{T)-N2f2'{J),

while after mixing the entropy is, by (95.2),

S = N1 log [e(Vx+ V2)/Ni]+N2 log [e(Vx+ V2)/N2]-

-Ntf-Nift.
The change in entropy is

AS = S-So
= Nx log [(Ki+ V2)IVx] +N2 log [(Ki+ V2)/V2],

or, since the volume is proportional to the number of particles for given press-

ure and temperature,

AS = Nx log (NJNx)+N2 log (N/N2). (95.7)

This quantity is positive, i.e. the entropy increases on mixing, as it should,

because the process is clearly irreversible. The quantity AS is called the entropy

ofmixing.

If the two gases were identical, the entropy after connecting the vessels

would be

S = (Nx+N2) log [{Vx+ K2)/(7V1 +AT2)]-(Ar1 +7V2)/,

and, since (Vx+ V2)/(Nx+N2) = VxJNx = V2/N2 (the pressures and tempera-

tures being equal), the change in entropy would be zero.

Thus the change in entropy on mixing is due to the difference in the mole-

cules of the gases that are mixed. This is in accordance with the fact that some

work must be done in order to separate again the molecules of the two gases

§96. Mixtures of isotopes

A mixture of different isotopes (in any aggregate state) is a kind of "solu-

tion". For simplicity and definiteness we shall speak of a mixture of two iso-

topes of any element, but the same results apply to a mixture of any number

of isotopes and also to chemical compounds in which different molecules

contain different isotopes.

In classical mechanics, the difference between isotopes is simply a difference

in mass, the laws of interaction between atoms of different isotopes being
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identical. This enables us to express the thermodynamic quantities for the
mixture very simply in terms of those for the pure isotopes. In calculating the
partition function for the mixture, the essential difference is that the phase
volume element should be divided not by N\ as for a pure substance but by
the product^! N2 \ of the factorials of the numbers of atoms of the two
components of the system. This gives in the free energy the further terms

Wlog (N1/N)+N2Tlog (N2/N)

(where N = i\Ti+JV2), which correspond to the "entropy of mixing" discussed
in §95 for the case of a mixture of gases.

Similar terms appear in the thermodynamic potential of the mixture, which
may be written

= NiTlog (NiW+NiTlog (N2/N)+
+JVi

i
uoi+A^2/"02. (96.1)

Here f^oi and fx02 are the chemical potentials of the pure isotopes, which
differ only by a constant times the temperature

:

^oi

-

1*02 = ~\T log (mi/AW 2), (96.2)

where mi and m2 are the atomic masses of the two isotopes. This difference

arises from the integration over the atomic momenta in the partition function;
for gases, (96.2) is simply the difference between the chemical constants multi-

plied by T.

The difference (96.2) is the same for all phases of a given substance. The
equation of phase equilibrium (the condition that the chemical potentials of
the phases are equal) is therefore the same for every isotope. In particular, we
can say that in the classical approximation the saturated vapour pressures of
the various isotopes are equal.

The situation is no longer so simple when the substance cannot be described

by means of classical statistics. In quantum theory, the difference between
isotopes becomes considerably more profound, because of the differences in

the vibrational and rotational levels, nuclear spins, etc.

It is important to note, however, that, even when the first correction terms
(of order n2

; see §33) in the thermodynamic quantities are taken into account,

the thermodynamic potential of the mixture may be written in the form (96.1),

since the terms in question form a sum, with each term containing the mass
of only one atom (see formula (33.15) for the free energy). These terms may
therefore be grouped so as to include them in the chemical potentials ^oi and
^02, and hence formula (96.1) (but not, of course, (96.2)) remains valid.

It should be pointed out that the thermodynamic potential (96.1) is form-
ally identical with that of a mixture of any two gases (§95). Mixtures having
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this property are called ideal mixtures. Thus mixtures of isotopes are ideal

mixtures up to and including terms of order h2
. In this sense, mixtures of iso-

topes form an exceptional case, since condensed (solid or liquid) mixtures of

different substances which are not isotopes can be ideal mixtures only to

a very rough approximation.

Within the limits of validity of formula (96.1) we can draw certain conclu-

sions about the vapour pressure of the isotopes over the condensed mixture.

The chemical potentials of the two components of the mixture are

fi! = riogci+jttoi,

fi2 = T log c2 +^,,2

(where c\ = Nx/N, c2 = N2/N are the concentrations of the isotopes). Equat-

ing these to the chemical potentials in the gas phase (which have the forms

Tlog Pi+%i(T) and Tlog P2+X2CO), we find for the partial vapour pressures

Pi = P01C1, P2 = P02C2, (96.3)

where P01 and P02 denote the vapour pressures of the two pure isotopes (at a

given temperature). Thus the partial vapour pressures of the two isotopes are

proportional to their concentrations in the condensed mixture.

In the classical approximation we have for the saturated vapour pressures of

the pure isotopes P01 = P02> as already mentioned. When quantum effects are

taken into account, however, the two vapour pressures are no longer equal.

The difference cannot be calculated in a general form applicable to all sub-

stances. Such a calculation can be made only for monatomic elements (the

inert gases) as far as the terms of order h2 (K. F. Herzfeld and E. Teller

1938).

The correction to the thermodynamic potential of a liquid phase is given

by formula (33.15)f ; taking the value per atom, we find the chemical poten-

tial

fj,
= ii^ + iffillAmT)^2 ,

where

*-©'+Q'+(-du\ 2

dz)

is the mean square of the force exerted on one atom by the other atoms in the

liquid. The chemical potential of the gas remains equal to its classical value,

since the interaction between atoms in the gas is negligible. Equating the chem-
ical potentials of the liquid and the gas, we find the correction to the clas-

sical value of the vapour pressure, and the required difference of vapour

t We again make use of the fact that small corrections to the various thermodynamic
potentials, when expressed in terms of the corresponding variables, are equal (§15).
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pressures between the two isotopes is

P01-P02 = Po^ (---), (96.4)
24r2

where Po is the common classical value of Poi and P02. We see that the sign

of the difference is determined by that of the difference of the reciprocal mas-

ses of the isotopes, the vapour pressure of the lighter isotope being the greater.

§97. Vapour pressure over concentrated solutions

Let us now consider the equilibrium of a solution with the vapour over it

,

which in general also contains both substances. The solution may be either

weak or strong, i.e. the quantities of the two substances in it are arbitrary.

It will be remembered that the results derived in §90 apply only to weak solu-

tions.

Since the solution and the vapour are in equilibrium, the chemical poten-

tials /Ui and fi2 in the solution and in the vapour are equal. If the numbers of

particles of the two substances in the solution are Nls and N2s , we can write

the expression (24.14) for the solution in the form

6Q = -Nls d^-Nzs dfi 2-S8 dT-P dVs , (97.1)

where S
s
and V

s
are the entropy and volume of the solution; the temperature

Tand pressure P are the same for the solution and the vapour.

We shall assume that the vapour over the solution is so rarefied that it may

be regarded as an ideal gas; its pressure is small. Then we can neglect in (97.1)

the terms proportional to P, viz. PdV and dQ. Let us first consider all deriv-

atives to be taken at constant temperature. Then (97.1) gives

ATls d J
u1 +iV2s d^ = 0. (97.2)

For the gas phase we have

plg = TlogP1+ %1(T),

li2g
= T\ogPz+%t{T),

where Pi and P2 are the partial pressures of the two components of the vapour.

Differentiating these expressions (with T constant), we find

dfilg = T d log Pl5 d[*2g = T d log Pa .

Substitution in (97.2) gives

Nls d log P,+N2S d log P2
= 0. (97.3)

The concentration I of the solution can be defined as the ratio of the num-

ber of particles of the first component to the total number of particles

:

I = iV(JVls+#2s),
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and we can similarly define the concentration x of the vapour. The partial

pressures Pi and P2 are equal to the total pressure P of the vapour multiplied

by the concentrations of the corresponding components, i.e. Pi = xP>

P2 = (1 —x)P. Substituting these values in (97.3) and dividing this equation

by the total number of particles in the solution, N = N
ls -hN^, we find

!dlogPjc+(l-£)dlogP(l-jc) = 0,

whence

d log P = (x— I) dx/x(l — x),

or

I = x- x( 1 - x)d log P/9x. (97.4)

This equation relates the solution and vapour concentrations to the depend-

ence ofthe vapour pressure on the vapour concentration.

One further general relation can be obtained by considering the dependence
of quantities on temperature. The condition for equality of the chemical po-

tentials of one component, say the first, in the vapour and in the solution is

Pig ~ ^sl^Nw Dividing both sides by T and using the fact that the deriva-

tive with respect to the number of particles is taken at constant temperature,

we write

Pig = 3 ®s
T dN18 T '

and then take the total derivative of each side with respect to temperature.

In doing so we may assume with sufficient accuracy that the thermodynamic
potential of the condensed phase (the solution) is independent of pressure.

Noting also that the partial derivative with respect to temperature is

we obtain the relation

eiogPi ejn
6T Wlg dN18

' (*7 ' 5)

Here w^ is the molecular heat function of the first substance as a gas; the

derivative 9WJdNls gives the change in the heat function of the solution when
one molecule of that substance is added to it. The quantity on the right of

(97.5) is therefore the heat absorbed when one particle of the first substance

goes from the solution to the vapour.

For the first substance in the pure state, the relation (97.5) becomes the

ordinary Clapeyron-Clausius equation,

,^81ogPio^ gji = Wlg-Wll>
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where P10 is the vapour pressure of the first substance in the pure state, and

wu its molecular heat function when liquid. Subtracting this equation term

by term from (97.5), we have finally

T^~\og^- = -qu (97.6)

where q\ = ^WJdNls
— w

ll
denotes the molecular "heat of dilution", i.e. the

quantity of heat absorbed when one particle from the liquid first substance

goes into the solution. A similar relation can, of course, be written down for

the second substance also.

§98. Thermodynamic inequalities for solutions

It has been shown in §21 that a body can exist only in states for which

certain conditions called thermodynamic inequalities are satisfied. These con-

ditions were derived, however, for bodies consisting of identical particles. We
shall now give a corresponding analysis for solutions, taking only the case of

a mixture oftwo substances.

In §21 the condition of equilibrium used was not the condition of maximum
entropy of a closed system as a whole but the equivalent condition which

requires that the minimum work needed to bring any small part of the system

from the equilibrium state to any neighbouring state should be positive.

We now use a similar procedure, considering some small part of the solu-

tion, which contains N solvent and n solute particles, say. In the equilibrium

state the temperature, pressure and concentration in this small part are equal

to their values in the rest of the solution (which acts as an "external medium").

Let us determine the minimum work needed to bring the temperature, press-

ure and number of solute particles in the small part considered (containing a

fixed number N of solvent particles) to values which differ by small but

finite amounts dT, dP and dn from their equilibrium values.

The minimum work will be done if the process occurs irreversibly. The

work done by an external source is then equal to the change in the energy of

the system, i.e.

dRmin = dE+dEo;

quantities without suffix refer to the small part considered, and those with

suffix zero refer to the remainder of the system. We express 6Eo in terms of

the changes in the independent variables

:

&Rmin = dE+TQdSo-Po&V + (to dn
,

where fx
' is the chemical potential of the solute in the medium; the number

of solvent particles is unchanged in the process considered, and so the
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corresponding term for the solvent may be omitted.* From the reversibility of

the process it follows that bSo = — bS, and from the conservation of the

total volume and quantity of solute in the whole solution we have <5V =
— dVo, bn — —dno. Substituting these, we obtain the final expression for

the work:

MSmin = bE-T bS+P bV-(Xo'bn. (98.1)

Thus the condition of equilibrium can be taken to be that for any small part

of the solution the inequality

dE-TodS+PodV-fio'dn >0 (98.2)

holds. Henceforward, as in §21, we shall omit the suffix zero in expressions

which are coefficients of the deviations of quantities from their equilibrium

values ; the values of these expressions in the equilibrium state will always be

meant.

We expand bE in powers of bV, bS and bn (regarding E as a function of V,

S and «). As far as the second-order terms this gives

+i 'Uw+$vrr+gw+

ButdE/dV= -P, dE/dS = T, dE/dn = fi'. Thus the first-order terms cancel

on substitution in (98.2), leaving

S2/T cftF" r^F
+2^Sv mV+2^,m"+ 2 BV^ dVdn -°- (98 ' 3 >

It is known from the theory of quadratic forms that, for a form in three

variables (here bS, bV, bri) to be everywhere positive, its coefficients must

t The differential of the energy of the medium (at constant N) is

dJE
1

,,
= TodS -P dV + fio

' d« -

Since the quantities T , P , fi
' may be regarded as constant, integration of this relation

leads to a similar relation between the finite variations of the quantities E , S , V , N .

The quantity fi
' should not be confused with the chemical potential of the pure solute

.
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satisfy three conditions, which for the form (98.3) are

§98

d2E/dV2 &E/dVdS

d2E/dSdV d*E/dS*

d2E/dndV d2E/dndS

d2EJdV2 d2E/dVdS

d2E/dSdV d^EJdS2

d2E/dVdn

d2E/dSdn

d2E/dn2

0,

(98.4)

0, WE/dS2 > 0.

Substituting the values of the derivatives of E with respect to V, S and n, we

can write these conditions as

dP/dV dP/dS

dT/dV dT/dS

dp'/dV dfi'/dS

dP/dV dP/dS

dT/dV dT/dS

dP/dn

dT/dn

dfi'/dn

0,

0, dT/dS > 0.

Each derivative is taken with the other two of the three variables V, S

and n constant. These determinants are Jacobians:

The second and third conditions give the already known inequalities

(dP/dV)Tn < and Cv
> 0. The first condition may be transformed as

follows

:

d(P, T, it,

1

) d(P, T, fi')/d(P, T, n)

d(V, S, n) d(V, S, ji)/8(P, T, ri)

(dfi'/dn)P>T

(d(V, S)/d(P, T))n
0.

Since the denominator is negative by the second condition (98.5), we must

have

(e/*79n)P> T > 0. (98.6)

Using instead of n the concentration c = n/N, we find (since N is constant)

(dfj.'/ac)p, T > 0. (98.7)

Thus, as well as the inequalities (dP/dV)T>c < 0, Cv > 0, the inequality

(98.7) must also be satisfied in solutions.

It may be noted that for weak solutions dfi'/dc = T/c, so that the

inequality (98.7) is always satisfied.

The case where

(dfjL'ldc)p. r = (98.8)
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needs special consideration. Such a state is called a critical point of the solu-

tion ; other aspects of this concept are discussed in §99.

The equality (98.8) corresponds to the vanishing of the first determinant

in (98.4) (the third-order determinant). In this case the quadratic form (98.3)

may vanish for certain values of bS, bV and dn, and higher-order terms in

its expansion must be examined in order to ascertain the conditions for the

inequality (98.2) to be satisfied (cf. §84).

The quadratic form (98.3) may be written in the identical form

2**min = dSd(dEldS) Vtn+ dVd(dE/dV)S,n+

+ dnd(dE/dn)s,v

= 6S6T- bVbP+ bnbp'. (98.9)

When (dfx'ldn)Pt T = 0, we have

dp' = (dp'/dT)bT+(dp'/dP)bP;

thus, if bT and bP are zero, bp' is also zero, and so is the whole expression

(98.9).
f The case where the quadratic form vanishes can therefore be treated

by simply considering deviations from equilibrium at constant T and P. For

such deviations, the inequality (98.2) may be written b0—p'bn >• 0. Expand-
ing b0 in powers of bn for constant P and T, and using the fact that d&/dn =
p', we find

where all the derivatives are taken with P and T constant. If dp'/dn = 0,

this inequality can be satisfied for all bn only if the coefficient of (bn)3 also

vanishes and that of (<5w)
4
is positive.

Thus, at a critical point we must have, together with (98.8),

(8V/9c2
)Pt r = 0, (98.10)

(eV/3c3
)Pt T > 0. (98.11)

The equations (98.8) and (98.10) define a line (the critical line) in the co-ordi-

nates P, T, c.

It should be emphasised, however, that the foregoing discussion of critical

points in solutions is subject to the same reservation as that made in §84

regarding the theory of critical points for pure substances: it is based on the

assumption that the thermodynamic quantities have no singularity (as func-

tions of the variables c, V,T)\ since this assumption cannot be justified, we
do not know to what extent the results derived are valid.

t The second and third expressions in (98.4) cannot vanish, since this would violate other
conditions (cf. §84).
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§99. Equilibrium curves

The state of a body consisting of identical particles is defined by the values

of any two quantities, for instance P and T. To define the state of a system

having two components (a binary mixture) it is necessary to specify three

quantities, for instance P, T and the concentration. In this and subsequent

sections, the concentration of the mixture will be defined as the ratio of the

quantity of one of the substances to the total quantity of both, and will be

denoted by x; clearly x takes values from to 1. The state of a binary mixture

may be represented by a point in a three-dimensional co-ordinate system,

whose axes correspond to these three quantities (just as the state of a system

of identical particles was represented by a point in the PT-plane).

According to the phase rule, a two-component system can consist of not

more than four phases in contact. The number of degrees of freedom of such

a system is two when there are two phases, one for three phases, and none for

four phases. The states in which two phases are in equilibrium are therefore

represented by points forming a surface in the three-dimensional co-ordinate

system; states with three phases (triple points) by points forming a line (called

the line of triple points or the three-phase line) and states with four phases by

isolated points.

It has already been shown in §81 that, for systems with only one compo-

nent, the states in which two phases are in equilibrium are represented by a

curve in the PT-plane; each point on this curve determines the pressure and

temperature (which are the same in both phases, from the conditions of

equilibrium). Points not lying on the curve represent homogeneous states of

the system. If the temperature and volume are taken as co-ordinates, the

phase equilibrium is represented by a curve such that points within it repre-

sent states where there is separation into two phases represented by the points

of intersection of a straight line T = constant with the equilibrium curve.

The situation is similar for mixtures. If we take as co-ordinates P, T and

the chemical potential of one component (i.e. quantities which have equal

values for phases in contact), equilibrium of two phases is represented by a

surface, each point of which determines P, T and \i for the two phases in

equilibrium. When three phases are present, the points representing their

equilibrium (triple points) will lie on the curves of intersection of the equi-

librium surfaces for each pair of them.

The use of the variables P, T, (j, is inconvenient, however, and in what

follows we shall use P, T, x as independent variables. In terms of these

variables the equilibrium of two phases is represented by a surface whose

points of intersection with a straight line P = constant, T = constant repre-

sent the states of the two phases in contact for the relevant values of P and

T (i.e. determine the concentrations of the phases, which may of course be
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different). The points on this line between the two points of intersection

represent states in which a homogeneous body is unstable and therefore

separates into two phases (represented by the points of intersection). Since

the surface represents the equilibrium between the two phases, it must clearly

be such that the number of its intersections with any straight line parallel to

the jc-axis is even.

P.T P.T

Fig. 21 Fig. 22

We shall generally use two-dimensional diagrams with P and x, or T and

x, as co-ordinates; the lines of intersection of the equilibrium surface with the

planes of constant temperature or pressure can then be drawn. We shall call

these lines equilibrium curves.

Let us consider the points on an equilibrium curve at which the concentra-

tion becomes equal in the two phases. Two cases are possible: (1) at such a

point all other properties of the two phases also become equal, i.e. the phases

become identical, (2) at such a point two distinct phases continue to exist.

In case (1) the point is said to be a critical point, in case (2) it will be called a

point of equal concentration.

Near a critical point the equilibrium curve has the form shown in Fig. 21,

or a similar form with a minimum at the critical point K (the abscissa being x

and the ordinate P or T; the curve is then the intersection of the equilibrium

surface with a plane of constant temperature or constant pressure respect-

ively). Points lying within this curve (in the hatched region) represent states

in which there is separation into two phases; the concentrations in these

phases are determined by the points of intersection of the curve with the

appropriate horizontal line. At the point K the two phases coalesce ; the fact

that at this point they form a single phase is seen from the possibility of a

continuous passage between the points coinciding at K along any path lying

outside the hatched region, so that separation into two phases nowhere

occurs.

Fig. 21 shows that near the critical point there exist states in which two

phases are in equilibrium which have concentrations x and x+dx differing by

an arbitrarily small amount. For such phases the equilibrium condition is

n(P, T, x) = (i(P, T, x+dx), where \i is the chemical potential of one of the
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substances in the mixture. Hence we see (cf. §83) that at the critical point

the condition

(dfi/dx)Pj T = (99.1)

must hold.

This condition is identical with (98.8), and hence the two definitions of

the critical point (here and in §98) are equivalent. It may be noted that fi in

(99.1) signifies the chemical potential of either of the two substances in the

mixture; but the two conditions obtained by taking these two chemical

potentials in (99.1) are actually equivalent. This is easily seen by noting that

each of the chemical potentials is the derivative of with respect to the

corresponding number of particles, and is a first-order homogeneous func-

tion in both numbers of particles.

The critical points clearly form a line on the equilibrium surface (as

already mentioned in §98).

Near a point of equal concentration the equilibrium curves must have the

form shown in Fig. 22, or a similar form with a minimum at the point K.

The two curves touch at the maximum (or minimum). The region between

the two curves is that where separation into phases occurs. At the point K
the concentrations of the two phases in equilibrium become equal, but the

different phases continue to exist, since any path between the points which

coincide at K must pass through the region of separation into two phases.

Like critical points, points of equal concentration lie on a curve on the equi-

librium surface.

Let us now consider the properties of the equilibrium curves at low con-

centrations (i.e. when one of the substances is present in the mixture in a

considerably smaller quantity than the other; x is close to zero or to unity).

It has been shown in §90 that at low concentrations (weak solutions) the

difference between the phase equilibrium temperatures of solutions and of

the pure substance (at a given pressure) is proportional to the difference of

concentrations of the two phases. The same applies to the pressure difference

at a given temperature. Moreover, it has been shown in §91 (also for low

concentrations) that the ratio of concentrations in the two phases depends

only on P and T, and so it may be regarded as constant in the neighbourhood

of x = 0.

From the above it follows directly that at low concentrations the equilib-

rium curves have the form shown in Fig. 23, i.e. consist of two straight lines

intersecting on the ordinate axis (or a similar form with the straight lines

ascending). The region between the two lines is the region of separation into

phases. The regions above and below the lines are the regions of the two

different phases.

At the beginning of this section it has already been mentioned that a

system with two components may consist of three phases in contact. Near a
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triple point the equilibrium curves appear as shown in Fig. 24. All three

phases have equal pressure and temperature in equilibrium. The points A, B, C
which determine their concentrations therefore lie on a straight line parallel

to the axis of abscissae. The point A, which gives the concentration of the

first phase at the triple point, is the point of intersection of the equilibrium

curves 12 and 13 between the first and second, and first and third, phases.

Similarly, the points B and C are the intersections of the equilibrium curves

12 and 23 between the first and second, and second and third, phases (B),

and of the equilibrium curves 23 and 13 between the second and third, and

PJ

PJ

k

12 12 23 23

Fig. 23 Fig. 24

first and third, phases (C). The points A, B, C are, of course, the points of

intersection of the plane P = constant or T = constant with three lines on

the equilibrium surface; we shall call the line corresponding to the point B
a line of triple points or a three-phase line. The regions I, II, III represent

states of the separate phases, first, second and third. The region between the

two curves 13 below the line ABC is the region of separation into the first

and third phases, and those between the two curves 12 and the two curves 23

(above the line ABC) are respectively the regions of separation into the first

and second, and second and third, phases. Region II must obviously lie

entirely above ABC (or entirely below ABC). At the points A, B and C the

curves 12, 13 and 23 intersect, in general, at certain angles, and do not join

smoothly. The directions of the curves 12, 13, 23 need not necessarily be as

shown in Fig. 24, of course. The only essential feature is that the curves 12

and 23 and the curves 13 must lie on opposite sides of the straight line ABC.
If any of these singular lines on the equilibrium surface is projected on the

PT-plane, the projection divides this plane into two parts. For a critical line,

the points projected on one part are those corresponding to the two different

phases and those corresponding to separation into these phases. The other

part of the PJ-plane contains the projections of points which represent

homogeneous states, at none of which does separation into two phases occur.

In Fig. 25 the dotted line represents the projection of a critical line on the
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PJ-plane. The letters a and b denote the two phases. The symbol a-b

signifies that this part of the plane contains the projections of the two phases

and those of states where these two phases are present in equilibrium. The

symbol ab denotes the single phase into which the phases a and b merge above

the critical points.

ab....-

/a-

6

Fio. 25

/ ^a-b-c

Fig. 26

/ a-b-c

Fig. 27 Fig. 28

The projection of a three-phase line similarly divides the PT-plane into two

parts. Fig. 26 shows which points are projected on the two parts. The symbol

a-b-c signifies that this region contains the projections of points which

represent the phases a, b, c and states in which there is separation into phases

a and b or b and c.

Fig. 27 shows a similar projection for a line of points of equal concentra-

tion, and Fig. 28 for a line of phase equilibrium for a pure substance (i.e.

x = or x = 1); the latter, of course, lies in the PT-plane. The letter b in

Fig. 28 signifies that this part of the plane contains the projections of points

corresponding to states of phase b only. In the sequence of letters in the

symbols a-b, a-b-c the letter b will be understood to denote a phase whose

concentration is higher than that of a, and c a phase whose concentration is

higher than that of 6.1
"

It may be noted that the four types of singular point on the equilibrium

curves (triple point, point of equal concentration, critical point, and pure-

substance point) correspond to the four possible types of maximum (or

minimum) on these curves.

t To avoid misunderstanding, we should emphasise that the notation a-b-c for a line of

equal concentration (unlike a three-phase line) is to some extent arbitrary: the letters a

and c here denote states which are not two essentially different phases, since they never

exist simultaneously in contact.
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If any phase has the same fixed composition everywhere (i.e. independently

of the values of P and T), the equilibrium curves become somewhat simpler

near the points here considered. Such phases are a chemical compound of the

two components or pure-substance phases, which always have concentration

jc = (or x = 1).

Let us consider the form of the equilibrium curves when there are phases

of constant composition, near points where the lines corresponding to these

phases terminate. It is evident that such points must be maxima or minima

of the equilibrium curves, and thus are among the types of point considered

in this section.

PJ PJ

Fig. 29 Fig. 30

PJ

Fig. 31

If the phase of constant composition is a pure-substance phase with con-

centration x = 0, the corresponding line coincides with the P-axis or the

T-axis and can terminate at a point of the kind shown in Fig. 29. This diagram

gives the form of the equilibrium curve near such a point ; one of the lines in

Fig. 23 coincides with the axis of ordinates.

If one phase is a chemical compound of fixed composition, then near a

point of equal concentration the equilibrium curve has the form shown in

Fig. 30, i.e. the inner region in Fig. 22 becomes a vertical line. The hatched

region on either side of this line is the region of separation into two phases,

one a chemical compound whose composition is given by the vertical line.

The curve has no break at the maximum, as in Fig. 22.

Similarly, near a triple point the equilibrium curves have the form shown in

Fig. 31. The phase which is a chemical compound is represented by a vertical

line, to which region II (Fig. 24) here reduces.
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§100. Examples of phase diagrams

In this section we shall enumerate the principal types of equilibrium curve;

in contrast to §99, their form will be considered in general, and not only near

the singular points. These curves (also called phase diagrams) can have many
forms, but in most cases they belong to one of the types given below, or are

a combination of more than one of these. The hatched regions in all these

diagrams are the regions of separation into phases, and the remaining regions

are those of homogeneous states. The points of intersection of horizontal

lines with the curves bounding the regions of separation into phases deter-

mine the composition of the phases into which separation occurs (for given

Fig. 32

P and T). The relative amounts of the two phases are determined by the

"lever rule" already mentioned in §81.

In what follows we shall for definiteness discuss 7!x-diagrams ; similar types

are possible in the co-ordinates P and x. The concentration x is taken as

abscissa, and varies from to 1

.

1. There are two phases; each can have any concentration (i.e. the two

components mix in any proportion in both phases). In the simplest case,

where the curves have no maxima or minima (apart from the pure-substance

points), the phase diagram has the "cigar" form shown in Fig. 32.

For example, let one of the phases be a liquid (the region below the cigar),

and the other a vapour (the region above the cigar). Then the upper curve of

the cigar is called the condensation point curve, and the lower curve the

boiling point curve?

If a liquid mixture of given composition is heated, then the liquid will begin

to boil at a temperature determined by the intersection B of the vertical line

AD (corresponding to the given concentration) with the lower curve of the

cigar. Vapour boils off, whose composition is given by the point C, i.e. has

t The laws of boiling and condensation of liquid mixtures were established by D. P.

Konovalov.
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a lower concentration than the liquid. The concentration of the remaining

liquid is obviously increased, and its boiling point accordingly rises. On
further heating, the point which represents the state of the liquid phase will

move upwards along the lower curve, and the point which represents the

vapour leaving the liquid will move upwards along the upper curve. Boiling

ceases at various temperatures, depending on the way in which the process

takes place. If boiling occurs in a closed vessel, so that all the vapour gener-

ated remains permanently in contact with the liquid, the liquid will obviously

boil away completely at a temperature where the concentration of the vapour

is equal to the original concentration of the liquid (the point D). In this case,

therefore, boiling begins and ends at temperatures given by the intersection

Fig. 33

of the vertical line AD with the lower and upper curves of the cigar. If the

vapour boiling off is steadily removed (boiling in an open vessel), then only

the vapour just evolved will be in equilibrium with the liquid at any given

time. In this case, it is evident that boiling will cease at the boiling point G
of the pure substance, where the liquid and vapour compositions are the

same. The condensation of vapour into liquid occurs in a similar manner.

The situation is exactly analogous when the two phases are a liquid (above

the cigar) and a solid (below the cigar).

2. The two components mix in any proportion in both phases (as in case

1), but there is a point of equal concentration. The phase diagram then has

the form shown in Fig. 33 (or a similar form with a minimum). At the point

of equal concentration, the two curves touch, and both have a maximum or

a minimum.

The transition from one phase to another occurs in the same way as described

for case 1, except that the process can terminate (if one phase is steadily

removed, as for example by boiling a liquid in an open vessel) not only at the

pure-substance point but also at the point of equal concentration. At the

composition corresponding to this point, the entire process occurs at a single

temperature. 1
"

3. There are two phases, liquid and gas, in which the two components mix

t A mixture corresponding to the point of equal concentration is also said to be azeo-

tropic.
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in any proportion, and there is a critical point. The phase diagram is as shown

in Fig. 34 (K being the critical point). The region to the right of the curve

corresponds to liquid states, and that to the left to gaseous states. It should

be remembered, however, that when there is a critical point the liquid and

gaseous phases can, strictly speaking, be distinguished only when they are in

equilibrium with each other.

A diagram of this type leads to the following curious effect. If a liquid

whose composition is represented by the line AC (passing to the right of the

point K) is heated in a closed vessel, then, after boiling begins (at the point

B), the quantity of vapour will gradually increase as heating continues, but

after a certain time it begins to decrease again, and the vapour disappears

entirely at the point C. This is called retrograde condensation.

Fig. 34 Fig. 35

4. Two liquids which mix, but not in all proportions. The phase diagram

is as shown in Fig. 35. At temperatures above that of the critical point K, the

components mix in any proportion. Below this temperature the components

do not mix in the proportions represented by points within the hatched region.

In this region there is separation into two liquid mixtures whose concentra-

tions are given by the points of intersection of the corresponding horizontal

line with the equilibrium curve. Similar diagrams are possible with K a mi-

nimum, or with two critical points, an upper and a lower, so that the region

of separation into two phases (two solutions) is bounded by a closed curve.

5. In the liquid (or gaseous) state the two components mix in any propor-

tion, but in the solid (or liquid) state they do not mix in all proportions

(limited miscibility). In this case there is a triple point. According as the

temperature of the triple point lies below the pure-component phase equi-

librium temperatures (the points A and C) or between them (it obviously can-

not lie above them on the assumption made here that the components mix

in any proportion in the higher phase), the phase diagram appears as in

Fig. 36 or Fig. 37 respectively. For example, let the phase of unlimited misci-

bility be a liquid, and that of limited miscibility be a solid. The region above

the curve ABC (Fig. 36) or ADC (Fig. 37) is the region of liquid states; the
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regions bounded by the curves ADF and CEG (Fig. 36) or ABF and CEG
(Fig. 37) are the regions of homogeneous solid phases (solid solutions). At the

triple point (whose temperature is given by the line DBE) the liquid and two

solid solutions of different concentrations are in equilibrium. The point B in

Fig. 36 is called the eutectic point. A liquid mixture whose concentration

corresponds to this point freezes completely, without change of concentra-

tion, whereas at other concentrations a solid mixture freezes out with a

concentration different from that of the liquid. The regions ADB and CBE
(Fig. 36) and ADB and CDE (Fig. 37) correspond to separation into a liquid

phase and one of the solid phases; the regions DEGF (Fig. 36) and BEGF
(Fig. 37) correspond to separation into two solid phases.

If, in a diagram such as Fig. 36, the components do not mix at all in the

solid state, the phase diagram takes the form shown in Fig. 38. In the hatched

Fig. 38 Fig. 39

regions above the line ABC, the mixed liquid phase is in equilibrium with the

solid phase of one of the pure substances, and below ABC we have the two
pure solid phases. When the temperature of the liquid mixture decreases, one
or the other of the pure substances freezes out according as the concentration

of the liquid lies to the right or the left of the eutectic point. As the tempera-
ture decreases further, the composition of the liquid varies along the curve

DB or EB, and the liquid freezes completely at the eutectic point B.

6. In the liquid state the two components mix in any proportion, but in the

solid state they do not mix at all, forming only a chemical compound of

definite composition. The phase diagram is shown in Fig. 39. The straight

line DE gives the composition of the chemical compound. There are two
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triple points, B and G, at which there is equilibrium between the liquid phase,

the solid chemical compound, and the solid phase of one of the pure com-

ponents. Between the points B and G lies a point of equal concentration, D
(cf. Fig. 30). It is easy to see where separation occurs, and which are the

resulting phases : in the region DBE they are a liquid phase and the solid

chemical compound; below the line CE, the chemical compound and one of

the solid pure substances, and so on. The freezing of the liquid terminates at

one of the eutectic points G and B, according as the concentration of the

liquid lies to the right or to the left of the line DE.

Fig. 40 Fig. 41

7. In the liquid state the two components mix in any proportion, but in

the solid state they do not mix at all, forming only a chemical compound;

this compound, however, decomposes at a certain temperature, before it

melts. The straight line denning the composition of this compound cannot

terminate at a point of equal concentration as in case 6, since it does not

reach the melting point. It can therefore terminate at a triple point of the type

shown in Fig. 31, §99 (the point A in Fig. 40). In Fig. 40, which shows one

possible form of the phase diagram for this case, it is easy to see which phases

result from the separation at various points in the hatched region.

8. In the solid state the components do not mix at all, and in the liquid

state they mix only in certain proportions. In this case there are two triple

points, at which the liquid is in equilibrium with the two solid pure substances

(the point B in Fig. 41) or one of the pure substances is in equilibrium with

two mixed liquid phases of different concentrations (the point D). The regions

not hatched in Fig. 41, above ABC and above DE, represent liquid states with

various concentrations; the hatched region above CD is that of separation

into two liquid phases, DEF is that of separation into a liquid and one of the

solid pure substances, and so on.

§101. Intersection of singular curves on the equilibrium surface

The four kinds of line discussed in §99 (critical lines, three-phase lines,

lines of equal concentration and pure-substance lines) all lie on the same

surface, the equilibrium surface. They will therefore in general intersect.
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Some properties of the points of intersection of such lines are described

below.

It may be shown that no two critical lines can intersect, nor can two lines

of equal concentration. We shall not pause to prove these statements here.

Let us now list (again without proof) the properties of the remaining points

of intersection. All these properties follow almost immediately from the gen-

eral properties of equilibrium curves given in §99. The diagrams will show

the projections of the intersecting lines on the iT-plane (see §99) ; their form

is, of course, chosen arbitrarily. A dotted line everywhere denotes a critical

-...ab

'to

(o)

&->Na-fc-c-d ^J
(e)

(f) »

Fig. 42

line; a continuous line, a line of phase equilibrium for a pure substance; a

broken line, a line of equal concentration; and a dot-and-dash line, a three-

phase line. The letters have the same significance as in Figs. 25 to 28 (§99).

At a point of intersection between a critical line and a pure-substance line

(Fig. 42a) both lines terminate, and similarly for a critical line and a three-

phase line (Fig. 42b). When a pure-substance line intersects a line of equal

concentration, only the latter terminates (Fig. 42c), the two curves touching

at the point of intersection. The same occurs when a line of equal concentra-

tion meets a critical line (Fig. 42d) or a three-phase line (Fig. 42e). In each

case the line of equal concentration terminates at the point of intersection,

the two curves touching at this point.

The point of intersection of three-phase lines (Fig. 42f) is a quadruple

point, i.e. a point where four phases are in equilibrium. Four three-phase

lines meet at this point, corresponding to equilibrium between each three of

the four phases.

Finally, the point where a pure-substance line intersects a three-phase line

(Fig. 42g) must clearly be also a point of intersection between the three-phase

line with all three pure-substance phase equilibrium lines (corresponding to

equilibrium between each two of the three pure-substance phases).
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§102. Gases and liquids

Let us now consider in more detail the equilibrium of liquid and gaseous

phases consisting of two components.

When the temperature is sufficiently high (T large in comparison with the

mean interaction energy of the molecules) all substances mix in any propor-

tion. On the other hand, since a substance is a gas at such temperatures, we

can say that all substances have unlimited miscibility in the gas phase

(although when there are critical lines the difference between the liquid and

the gas becomes to some extent arbitrary, and so likewise does the foregoing

formulation).

In the liquid state, some substances mix in any proportion, others only in

certain proportions (liquids of limited miscibility).

Fig. 43 Fig. 44

In the former case, when the two components mix in any proportion in

both phases, the phase diagrams contain no triple points, since the system

cannot consist of more than two phases (all liquid states are one phase, and

the same applies to gaseous states). Let us consider the projection of the

singular lines of the equilibrium surface on the PT-plane. There are two lines

of phase equilibrium for the pure substances (i.e. for concentrations x =
and x = 1 in both phases). One of these lines is itself in the PT-plane, and

the other is in a plane parallel to it, so that its projection has the same form

as the line itself. Each of these lines terminates at a point which is a critical

point for phases of the corresponding pure substance. A critical line begins

and ends at these points (at a point of intersection of a critical line and a pure-

substance line, both terminate; see §101). Thus the projection of these various

lines on the PJ-plane has the form shown in Fig. 43 ; the notation is the same

as in §§99 and 101. The letters g and / have a similar significance to a, b, c

in the diagrams in §§99 and 101 : g denotes gas, and / liquid. The regions g
and / contain projections of gaseous and liquid states respectively ; the region

g—l includes these and also states where separation into liquid and gas
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occurs; above the critical line, the difference between liquid and gas does not

exist.

If there is also a line of equal concentration, the projection on the PT-

plane is as shown in Fig. 44. The projection of the line of equal concentra-

tion lies either above the line from the origin O to B (as in Fig. 44), or below

OC, but not between them. Only A, B, C are points of intersection of lines.

The point D does not correspond to a true intersection of the pure-substance

line with the critical line; these intersect only in projection. The letters h and

h in the diagram denote liquid phases of different concentrations. Above the

line of equal concentration there is only one liquid phase.*

r<rA TA*T<Tg

Fig. 45

Tg<T< Tr

P<Pr PC<P<PA

Fig. 46

Pa*P-=PB

All these properties of the projections of the singular lines on the PT-plane

become obvious if we consider the phase diagrams corresponding to the

cross-sections of the equilibrium surface by various planes of constant tem-

perature (or pressure). For example, the cross-sections corresponding to

pressures below that at B and to pressures between those of A and B in

Fig. 43 give phase diagrams as shown in Figs. 32 and 34 respectively. Fig. 45

shows cross-sections for various successive temperature ranges in Fig. 44

(7^, TB , Tc being the temperatures corresponding to the points A, B, C):

the region of separation into two phases "breaks up" at the point of equal

concentration, and two critical points are formed; thereupon, first one and

t Not being concerned with solid phases, we shall conventionally show lines in all the

(P, T) diagrams as starting from the origin, as if solidification did not occur.
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then the other hatched region shrink to a point on the ordinate axis and dis-

appear. Fig. 46 shows similar cross-sections for successive pressure ranges.

If the two components have limited miscibility in the liquid state, there is a

three-phase line, which terminates at a point where it intersects a critical line

c
/•••••• b-9h

/ /A
VI- .»

Ly-h/ A> /

/ y/ yB

/\^ u
~i^-j^^-^^^^ 9

a i

/ ^
sB

Fig. 47 Fig. 48

T<Tr Tr<T<TA

Fig. 49

TA<T<TB

gl2

Ta<T

p<pa PB<P<PA Pa<P< Pc

Fig. 50

fb<P

starting from that point. Figs. 47 and 48 show the two essentially different

types of (P, T) projection that can occur in this case. They differ in that in

Fig. 47 the projection of the three-phase line lies above both the pure-sub-

stance lines, while in Fig. 48 it lies between them; the three-phase line cannot

lie below both the pure-substance lines, since in the gaseous state the two
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components mix in any proportion. In both cases there are two critical lines,

one of which runs out towards high pressures.

Figs. 49 and 50 show a number of successive cross-sections by Px and Tx

planes for the case shown in Fig. 47.

In conclusion, it should be emphasised that the examples of (P, T) diagrams

discussed in this section are only the most typical ones for equilibrium of liquid

and gaseous phases ; they do not exhaust all theoretically possible forms.



CHAPTER X

CHEMICAL REACTIONS

§103. The condition for chemical equilibrium

A chemical reaction occurring in a mixture of reacting substances ultimately

leads to the establishment of an equilibrium state in which the quantity of

each of the substances that take part in the reaction no longer changes. This

case of thermodynamic equilibrium is called chemical equilibrium. Any chem-

ical reaction can take place, in general, in either direction; until equilibrium

is reached, one direction predominates, but in equilibrium the two opposite

reactions occur at rates such that the total numbers of particles of each of

the reacting substances remain constant. The object of thermodynamics as

applied to chemical reactions is to study only the chemical equilibrium, not

the course of the reaction leading to that equilibrium.

It is important to note that the state of chemical equilibrium is independent

of how and under what conditions the reaction occurredt
; it depends only

on the conditions under which the mixture of reacting substances exists in

equilibrium. In deriving the condition for chemical equilibrium, we can there-

fore make any desired assumptions concerning the course of the reaction.

First of all, we shall describe the method to be used for expressing the

reaction. Chemical reactions are commonly written as symbolic equations,

which, if all the terms are taken to one side, have the form

1^ = 0, (103.1)
i

where the A
{
are the chemical symbols of the reacting substances, and the

coefficients v
{
are positive or negative integers. For example, in the reaction

2 H 2+0 2 = 2 H aO or 2 H 2+0 2-2 H aO = the coefficients are vHz
= 2,

"o 2
= 1» "h 2o = -2.

Let us assume that the reaction occurs at constant temperature and pres-

sure. In such processes the thermodynamic potential of the system tends to

a minimum. In equilibrium, therefore, the potential must have its least

possible value (for given P and T). Let Nx , N2 , ... be the numbers of particles

of the various substances taking part in the reaction. Then the necessary

condition for to be a minimum can be written as the vanishing of the total

t In particular, it is independent of whether a catalyst took part in the reaction.

316
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derivative of & (for given P and T) with aspect to one of the N
it say Nil

d& 8<£ d/Va 60s dNs

dN±
+
dN2 dN1

+ dNz d~Nl
+ '" ~

The changes in the numbers N
t
during the reaction are related by the reaction

equation: it is clear that, if Ni changes by vlt each of the other N
t
will change

by vit so that di^ = (vJv^diVi, or dNJdNt = vjvv The foregoing equation

may therefore be written

r w vx

Finally, putting dOjdN
i
= fit

and multiplying by v±, we have

I vnn = 0. (103.2)
i

This is the required condition for chemical equilibrium. In order to obtain

it, therefore, we must replace the symbols A
t
by the corresponding chemical

potentials fit
in the equation of the chemical reaction. When several different

reactions can occur in the mixture, the equilibrium condition will be a set of

several equations such as (103.2), each obtained by the above method from

the equation of the corresponding reaction.

It may be noted that the condition (103.2) retains its form even when the

reacting substances are distributed in the form of solutes in two different

phases in contact. This follows from the fact that in equilibrium the chemical

potentials of each substance in either phase must be equal, in accordance

with the conditions for phase equilibrium.

§104. The law of mass action

Let us apply the general condition for chemical equilibrium, derived in

§103, to reactions taking place in a gas mixture, assuming that the gas may be

regarded as an ideal one.

The chemical potential of each gas in the mixture is (see §95)

|U i = riogP
i+ Xi(J), (104.1)

where P
i
is the partial pressure of the /th gas in the mixture; P

i
= c^P if P

is the total pressure of the mixture and c
i
= NJN is the concentration of the

gas in question, defined as the ratio of the number N. of molecules of that gas

to the total number N =
J]Nt

of molecules in the mixture.

It is now easy to write down the condition of chemical equilibrium for

reactions in a mixture of gases. Substitution of (104.1) in (103.2) gives

E Wi = rE n log^oi+E n%i = o,
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where the P
oi

are the partial pressures of the gases in a state of chemical

equilibrium, or

£ VjlogPoi = -^rX va^

Using the notation

we thus have

KV(T)
= e-£"<x<l T

, (104.2)

II Poi
" = KJT). (104.3)

Instead of P
oi
we can substitute Pc

oi , where the c
oi

are the concentrations of

the gases in chemical equilibrium. Then

n coi

v
< = P~^Kp(T)

= KC{P, T). (104.4)
i

The quantity on the right of (104.3) or (104.4) is a function only of tempera-

ture and pressure, and does not depend on the initial amounts of the reacting

gases: this quantity is usually called the chemical equilibrium constant, and

the law expressed by formula (104.3) or (104.4) is called the law of mass

action.

The dependence of the gas reaction equilibrium constant on the pressure

is entirely determined by the factor P~Zvi on the right-hand side of equation

(104.4); if the quantities of reacting substances are expressed in terms of their

partial pressures, the equilibrium constant is independent of pressure. The

determination of its dependence on temperature, however, requires further

assumptions concerning the properties of the gases.

For example, if the gases have constant specific heats, a comparison of the

expression (104.1) with formula (43.3) for the thermodynamic potential of

such a gas shows that the functions ^(7) are of the form

Xm = eoi-cpiT\og T-Td, (104.5)

where cpi is the specific heat and £{
the chemical constant of the gas. Substi-

tuting this expression in (104.2), we obtain for the equilibrium constant the

formula

Kp(T)
= e^Cr^ne-^WT (104.6)

which is essentially an exponential function of temperature.

The law of mass action is valid also for reactions between solutes, provided

that the solution may be regarded as weak. For the chemical potential of each

solute has the form

V^Tlogd+yii^T), (104.7)

obtained by differentiating the thermodynamic potential (88.3) with respect

to n
{

. The concentration c
{
is here defined as the ratio of the number of par-

ticles of the solute in question to the number of solvent particles (c
t
= NJN).
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Substituting (104.7) in the equilibrium condition (103.2), we find in the same

way
ncoi

v
' = K(P,T), (104.8)

i

with the equilibrium constant

K{P, T) = e-*w/T. (104.9)

Unlike the case of gas reactions, the dependence of the equilibrium constant

on the pressure here remains indeterminate.

If the reaction involves, as well as gases or solutes, substances in a pure

condensed phase (i.e. not mixed with other substances), e.g. pure solids, then

the equilibrium condition again leads to the law of mass action. Here, how-

ever, since the chemical potential of the pure phases depends only on the

pressure and temperature, the left-hand side of the equation for the law of

mass action will not involve the quantities of the pure phases, i.e. the product

of the concentrations of the gases (or solutes) must be written as if the solids

were absent. The latter affect only the dependence of the equilibrium constant

on pressure and temperature.

If only gases and solids take part in the reaction, then, since the pressure

of the gases is comparatively small, the chemical potential of the solids may

be regarded as independent of the pressure, and the dependence of the equi-

librium constant on the pressure remains the same as in (104.4). The sum

Zv
{
in the exponent must of course denote only the sum of the coefficients of

the gaseous substances in the reaction equation.

Finally, the law of mass action is valid also for reactions in weak solutions

where the solvent as well as the solutes takes part in the reactions. For, when

the chemical potential is substituted in the condition for chemical equilib-

rium, the small terms which contain the concentration may be omitted, and

the potential then reduces to a quantity which depends only on temperature

and pressure. Thus we again obtain the equation of the law of mass action,

and its left-hand side again involves only the concentrations of the reacting

solutes, not that of the solvent.

PROBLEMS
Problem 1. Find the equilibrium constant for the dissociation of a diatomic gas at high

temperatures; the gas molecule consists of identical atoms and has zero spin and orbital

angular momentum in the ground state.

So LUTiON. The reaction concerned is of the form A2 = 2A. The specific heats of the

gases A2 and A are cpi.t
= 9/2, cp± = 5/2, and the chemical constants are (see (45.4),

(46.4), (49.8))

CA = log [gJ.m/lnVn U, = log [(W*co)(m/nm

where m is the mass of the atom A (that of the molecule A 2 being 2m), and g± the statis-

tical weight of the ground state of the atom A; at sufficiently high temperatures g± =
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(2S+1)(2Z.+ 1), where S and L are the spin and orbital angular momentum of the atom.
Substitution in (104.6) gives

Kpm = JJ. («

V

Here e = 2e A — £oa2
is the dissociation energy of the molecule.

Problem 2. Determine the dependence of the concentration of hydrogen dissolved as
H atoms in a metal on the pressure of H 2 gas over the metal.

Solution. Regarding the process as a chemical reaction H2
= 2H, we can write the

equilibrium condition as fiSi = 2/jh; fin2
is written as the chemical potential of an ideal

gas, fiw
2
= T log P+x(T), and

i
uH as the chemical potential of the solute in a solution,

fiu = Tlog c+v- Since y> depends only slightly on the pressure (cf. §91), we find c = con-
stantxVP.

§105. Heat of reaction

A chemical reaction is accompanied by the absorption or evolution of heat.

In the former case the reaction is said to be endothermic, and in the latter

case exothermic. It is evident that, if any particular reaction is exothermic,

the reverse reaction will be endothermic, and vice versa.

The amount of heat involved in a reaction depends on the conditions under
which the reaction occurs. Hence, for instance, we must distinguish the heats

of reaction at constant volume and at constant pressure (although the differ-

ence is usually quite small).

As in calculating the heat of solution (§92), we first find the maximum work
which can be obtained by means of the chemical reaction. We call a reaction

between one group of molecules as shown by the reaction equation an "ele-

mentary reaction", and calculate the change in the thermodynamic potential

of a mixture of reacting substances when a small number dn of elementary

reactions take place, assuming that the reaction occurs at constant tempera-

ture and pressure. We have

The change in the number of molecules of the rth substance after dn element-

ary reactions is clearly dN
{
= — v

i
dn. Thus

tO= -dn^v^i. (105.1)
i

In equilibrium 60/dn is zero, as we should expect.

Formula (105.1) is the general expression for the minimum work which
must be done in order to bring about dn elementary reactions. It is also the

maximum work which can be obtained from that number of reactions occur-

ring in the reverse direction.
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Let us first suppose that the reaction is between gases. Using the expression

(104.1) for pit
we find

60 = -WZvilogPi+Zvad,
i i

or, in terms of the equilibrium constant,

60 = TM-I Vi log Pi+ log KP(T)]
i

= T &![-£ Vi log Ci+ log KC(P, T)]. (105.2)
i

For reactions in solution we similarly find, using the expression (104.7)

for n,
60= -6n (r£ vjlog q+£ viVi),

i i

or, in terms of the equilibrium constant K(P, T),

60 = T6n [-£ Vi log Ci+ log #(P, J
7

)]. (105.3)
i

The sign of 60 determines the direction in which the reaction takes place

:

since tends to a minimum, for 60 < the reaction occurs in the forward

direction (i.e. "from left to right" in the equation of the chemical reaction),

while if 60 > the reaction will actually go in the opposite direction in the

mixture concerned. It may be noted, however, that the direction of the

reaction is also evident directly from the law of mass action: we form the

product Iipy* for the mixture in question and compare it with the value of

the equilibrium constant for the reaction. If, for instance, we find that ITP^ >
Kpi this means that the reaction will occur in the forward direction, so as

to reduce the partial pressures of the original substances (which have positive

v
t
in the reaction equation), and increase those of the reaction products

(for which v
{
< 0).

We can now determine also the heat absorbed (or evolved, according to

sign), again for 6n elementary reactions. Formula (92.4) shows that this heat

6Qp is, for a reaction at constant temperature and pressure,

8 60\

For reactions between gases we have, substituting (105.2),

iQ^-F^y . (105.4)

Similarly, for solutions

SQP = -T>l>n
dl0S«P' T)

. (.05.5)

We may note that 6Qp is simply proportional to 6n and does not depend on

the values of the concentrations at any instant. These formulae are therefore

valid for any 6n, whether small or not.
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If Qp > 0, i.e. the reaction is endothermic, 6 log K/dT < 0, and the equi-

librium constant decreases with increasing temperature. On the other hand,

for an exothermic reaction (Qp < 0) the equilibrium constant increases with

temperature. An increase in the equilibrium constant signifies that the chem-

ical equilibrium is shifted back towards the re-formation of the initial sub-

stances—the reaction goes "from right to left", so as to increase the product

nc
Qi
n

. Conversely, a decrease in the equilibrium constant signifies a shift

of the equilibrium towards formation of the reaction products. In other

words, we can formulate the following rule : heating shifts the equilibrium in

the direction of the endothermic process, and cooling in the direction of the

exothermic process. This rule is entirely in agreement with Le Chatelier's

principle.

For reactions between gases the heat of reaction at constant volume (and

temperature) is also of interest. This quantity bQ
v

is related in a simple

manner to bQ
p

. The quantity of heat absorbed in a process at constant vol-

ume is equal to the change in the energy of the system, whereas bQ
p

is equal

to the change in the heat function. Since E = W—PV, it is clear that bQv —
= 6Qp -b{PV), or, substituting PV = TYJ

N
i
and bN

t
= -v

i
bn,

&Qv= bQp+Tdn^Vi. (105.6)
i

Finally, let us determine the change in volume of a mixture of reacting

substances as a result of a reaction occurring at constant pressure (and tem-

perature). For gases, the problem is trivial:

bV = (TJP)bN = -(T/P)bn £ Vi . (105.7)
i

In particular, reactions in which the total number of particles is unchanged

(£ v
{
= 0) occur without change of volume.

For reactions in weak solutions we use the formula bV = 3 b&/dP and,

substituting (105.3), we obtain

dv=TSn SJog 1̂
T)

; (1058>

for gases this formula reduces to (105.7), of course, on substituting K =
= K

p
(T)P-Zv

'.

Thus a change in volume in the reaction is due to a pressure dependence of

the equilibrium constant. In a similar way to the previous discussion of the

temperature dependence, we easily deduce that an increase in pressure favours

reactions in which the volume decreases (i.e. shifts the equilibrium in the

direction of such reactions), and a decrease in pressure favours reactions

which lead to an increase in volume, again in complete agreement with Le
Chatelier's principle.
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§106. Ionisation equilibrium

At sufficiently high temperatures, collisions between gas particles may

cause their ionisation. The existence of such thermal ionisation leads to the

establishment of a thermal equilibrium in which certain fractions of the total

number of gas particles are in various stages of ionisation. Let us consider

thermal ionisation of a monatomic gas; this is the most interesting case,

since chemical compounds are usually completely dissociated before the

onset of thermal ionisation.

Thermodynamically, ionisation equilibrium is a particular case of chemical

equilibrium corresponding to a series of simultaneously occurring "ionisation

reactions", which may be written

A = Ai+e-, Ai = A 2+e", ... ,
(106.1)

where the symbol A denotes the neutral atom, Ai, A 2 , . . . the singly, doubly

etc. ionised atoms and e ~ the electron. For these reactions the application

of the law of mass action gives the set of equations

cn^lcnc = PKPM(T) (n = 1, 2, . . .), (106.2)

where c is the concentration of neutral atoms, ci, c 2 , .

.

. the concentrations

of the various ions, and c the concentration of electrons (each defined as the

ratio of the number of particles of the kind in question to the total number

of particles, including electrons). To these equations we must add one which

expresses the electrical neutrality of the gas as a whole

:

c = ci+2c2+3c3+ .... (106.3)

Equations (106.2) and (106.3) determine the concentrations of the various

ions in ionisation equilibrium.

The equilibrium constants Kp
{n) can be calculated without difficulty. All

gases which take part in "reactions" (gases of neutral atoms, ions, or elec-

trons) are monatomic and have constant specific heat c
p
= 5/2, and their

chemical constants are C = log \g(m/2jifi2f12
], where m is the mass of a

particle of the gas considered, and g the statistical weight of its ground state;

for electrons, g = 2, while for atoms and ions g = (2L+1)(25+1), where

L and S are the orbital angular momentum and spin of the atom or ion.1
"

Substituting these values in formula (104.6), we obtain the following express-

ion for the required equilibrium constants

:

t For reasons given below we may assume that all atoms and ions are in the ground

state, even in a considerably ionised gas. If the atom (or ion) ground state has a fine struct-

ure, we assume that T is large compared with the intervals in this structure.
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where m is the electron mass and In ~ sQn -e n_ x
the energy of the «th

ionisation (wth ionisation potential) of the atom.

The degree of ionisation (for w-fold ionisation) of the gas becomes of the

order of unity as the temperature increases and the equilibrium constant

K}n) = PK
v
(n) decreases to a value of the order of unity. It is very important

to note that, despite the exponential dependence of the equilibrium constant

on temperature, this stage is reached not when T ~ In but at considerably

lower temperatures. The reason is that the coefficient of the exponential

eIJT is small: the quantity (P/T)(fi2/mTfl2 = (N/V)(n2/mT)312
is in general

very small, being for T ~ / of the order of the ratio of the atomic volume to

the volume V/N per atom in the gas.

Thus the gas will be considerably ionised even at temperatures which are

small compared with the ionisation energy, but the number of excited atoms

in the gas will still be small, since the excitation energy of the atom is in

general of the same order as the ionisation energy.

When T becomes comparable with the ionisation energy, the gas is almost

completely ionised. At temperatures of the order of the binding energy of

the last electron in the atom, the gas may be regarded as consisting of elec-

trons and bare nuclei only.

The binding energy h of the first electron is usually much less than the

subsequent ones In ; there is therefore a range of temperatures in which the

gas may be supposed to include only neutral atoms and singly charged ions.

Defining the degree of ionisation a of the gas as the ratio of the number of

ionised atoms to the total number of atoms, we have

c = Cl = a/(l +a), Co = (1 -a)/(l + a),

and equation (106.2) gives (l-a2
)/<x

2 = PK
p
(1\ whence

a = l/V(l+i>^p
(1)

)- (106.5)

This entirely determines the degree of ionisation as a function of pressure

and temperature (in the temperature range considered).

§107. Equilibrium with respect to pair production

At extremely high temperatures, comparable with the rest energy1" mc2 of

the electron, collisions of particles in matter may be accompanied by the

formation of electron-positron pairs. The number of particles itself then cea-

ses to be a given quantity, and depends on the conditions of thermal equi-

librium.

Pair production (and the reverse process, annihilation) can be regarded

thermodynamically as a "chemical reaction" e + +e~ = y, where the symbols

t The energy mc2 = 0.51 X106 eV, so that the temperature mc*fk = 6X109 degrees.
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e + and e ~ denote a positron and an electron, and y denotes one or more

photons. The chemical potential of the photon gas is zero (§60). The condition

of equilibrium for pair production is therefore

^- +^+=0, (107.1)

where fx
~ and fx

+ are the chemical potentials of the electron and positron

gases. It should be emphasised that n here denotes the relativistic expression

for the chemical potential, including the rest energy of the particles (cf. §27),

which plays an important part in pair production.

Even at temperatures T ~ mc2
, the number of pairs formed per unit volume

is very large in comparison with the atomic electron density (see the next

footnote). We can therefore suppose with sufficient accuracy that the number
of electrons is equal to the number of positrons. Then li~ = fx

+
, and the

condition (107.1) gives fi~ = \i
+ = 0, i.e. in equilibrium the chemical po-

tentials of the electrons and positrons must be zero.

Electrons and positrons obey Fermi statistics; their number is therefore

obtained by integrating the distribution (55.3) with fx = 0:

" +

="-=Jj3JJ^p 007.2)

where e is determined from the relativistic expression e = c \/{p
2+m2c2).

For T<zmc2
, this number is exponentially small (~ e

_mc2/T
). In the

opposite case (7» mc2
) we can put s = cp, and formula (107.2) gives

N + = N~ = v_m 3 r x2 dx

n2 \hc)
J

ex +l

The integral in this formula can be expressed in terms of the £ function (see

the second footnote to §57), givingt

N + = N~ = ^p (fc\
V = 0.183(r/^c)3 F. (107.3)

The energy of the positron and electron gases is similarly

E+=E~= ™^j*te = 7^^/120(^)3. (107.4)
71'

This quantity is | of the energy of black-body radiation in the same volume.

t For T ~ mc 2 the volume per particle formed is of the order of (fi/mc)3
, i.e. the cube of

the Compton wavelength. This volume is very small in comparison with the atomic di-

mensions (for example, in comparison with the cube of the Bohr radius, (fi
2/me2

)
3
).
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PROBLEM

Determine the equilibrium density of electrons and positrons for T « mc2
.

Solution. Using the expression (46.1a) for the chemical potential (to which mc2 must
be added), we obtain

n+n- = 4(mTI27ih2
)
3e -««•"/*

where n ~ = N"/V and n + = N+/V are the electron and positron densities. If n is the
initial electron density (in the absence of pair production), then n ~ = n + +n , and we find

/i
+ = »--«o= -in +[W+ $(.mT/2nfi*ye- im°

t
iT

]
1i 2

-



CHAPTER XI

PROPERTIES OF MATTER AT VERY
HIGH DENSITY

§108. The equation of state of matter at high density

The study of the properties of matter at extremely high density is of funda-

mental importance. Let us follow qualitatively the change in these properties

as the density is gradually increased.

When the volume per atom becomes less than the usual size of the atom,

the atoms lose their individuality, and so the substance is transformed into

a highly compressed plasma of electrons and nuclei. If the temperature of

the substance is not too high, the electron component of this plasma is a

degenerate Fermi gas. An unusual property of such a gas has been mentioned

at the end of §56: it becomes more nearly "ideal" as the density increases.

Thus, when the substance is sufficiently compressed, the interaction of the

electrons with the nuclei (and with one another) becomes unimportant, and

the formulae for an ideal Fermi gas may be used. According to (56.9) this

occurs when «
e
» (m

e
e2/h2)

3Z2 holds, where n
e

is the number density of

electrons, m
e

the electron mass, and Z some mean atomic number of the

substance. We therefore find for the total mass density of the substance the

inequality

q » {mee
2
lh

2fm'Z2 ~ 20Z2 g/cm3
,

(108.1)

where m' is the mass per electron, so that q = n
e
m \t The "gas of nuclei"

may still be far from degeneracy, because of the large mass of the nucleus,

but its contribution to the pressure of the substance, for example, is in any

case entirely negligible in comparison with that of the electron gas.

Thus the thermodynamic quantities for a substance under the conditions in

question are given by the formulae derived in §56, applied to the electron

component. In particular, for the pressure we have*

p= 2^L^(±\m . (108.2)
5 me \m'j

+ In all the numerical estimates given in this section it is assumed that the mean atomic

weight of the substance is twice its mean atomic number, so that m' is twice the proton

mass.

It may be mentioned that the degeneracy temperature of the electrons corresponding to

a density g ~ 20Z 2 g/cm3
is of the order of 106Z4/3 degrees.

J This expression is the first term in an expansion in powers of the reciprocal density

(the small parameter is {\lne){me e
i/h z

)
a
, but a more precise criterion of smallness will

327
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The condition (108.1) on the density gives for the pressure the numerical

inequality P» 5 X 108 Z10/3 atm.

In the above formulae the electron gas is assumed non-relativistic. This

implies that the Fermi limiting momentum pQ is small compared with mc
(see §58), giving the numerical inequalities

o «: 2X 106 g/cm3
, P «: 1017 atm.

When the density and pressure of the gas become comparable with these

values, the electron gas becomes relativistic, and when the opposite inequali-

ties hold we have the extreme relativistic case, where the equation of state is

determined by formula (58.4):

P = l(3n*)U*hc(Q/m')*l*. (108.3)

A further increase in density leads to states where nuclear reactions con-

sisting in the capture of electrons by nuclei (with emission of neutrinos) are

thermodynamically favoured. Such a reaction decreases the charge on the

nucleus (leaving its atomic weight constant), and this in general causes a

decrease in the binding energy of the nucleus, i.e. a decrease in its mass

defect. The energy required to bring about such a process is more than

counterbalanced at sufficiently high densities by the decrease in the energy of

the degenerate electron gas because of the smaller number of electrons.

It is not difficult to write down the thermodynamic conditions which

govern the "chemical equilibrium" of the nuclear reaction mentioned, which

may be symbolically written as

Az+ e~ = Az_x +v,

where Az denotes a nucleus of atomic weight Z, e~ an electron and v a

neutrino. The neutrinos are not retained by matter and leave the body; such

a process must lead to a steady cooling of the body. Thus thermal equilibrium

can be meaningfully considered in these conditions only if the temperature

of the substance is taken as zero. The chemical potential of the neutrinos will

not then appear in the equation of equilibrium. The chemical potential of the

nuclei is mainly governed by their internal energy, which we denote by — sA z
(the term "binding energy" usually refers to the positive quantity eA z).

Finally, let fie (ne) denote the chemical potential of the electron gas as a

function of the number density n
e
of particles in it. Then the condition of

chemical equilibrium takes the form —eAZ+ fie
(n

e)
= —eAiZ-v or' Put"

ting eA,z- £A,z-i = 4
fie(ne) = A.

depend on Z also). In the next approximation, which contains an extra power q~ 113
, a

contribution to the plasma energy is given by the Coulomb interaction of the electrons and
nuclei. The minimum of this energy corresponds to an ordered arrangement of the nuclei

in a "crystal lattice". A calculation of the relevant corrections to the equation of state is

given by A. A. Abrikosov, Soviet Physics JETP 12, 1254, 1961.
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Using formula (58 2) for the chemical potential of an extreme relativistic

degenerate gas, we thus find

ne = A*\1n\chy. (108.4)

The equilibrium condition therefore gives a constant value of the electron

density. This means that, as the density of the substance gradually increases,

the nuclear reaction in question begins to occur when the electron density

reaches the value (108.4). As the substance is further compressed, more and
more nuclei will each capture an electron, so that the total number of electrons

will decrease but their density will remain constant. Together with the electron

density the pressure of the substance will also remain constant, being again

determined mainly by the pressure of the electron gas: substitution of (108.4)

in (108.3) gives

P = A*l\27i\hc)K (108.5)

This will continue until each nucleus has captured an electron.

At still higher densities and pressures the nuclei will capture further

electrons, the nuclear charge being thus reduced further. Ultimately the nuclei

will contain so many neutrons that they become unstable and break up. At a

density q ~ 3X 1011 g/cm3 (and pressure P ~ 1024 atm) the neutrons begin

to be more numerous than the electrons, and when q ~ 1012 g/cms the press-

ure due to the neutrons begins to predominate. This is the beginning of a

density region in which matter may be regarded as essentially a degenerate

neutron Fermi gas with a small number of electrons and various nuclei,

whose concentrations are given by the equilibrium conditions for the corre-

sponding nuclear reactions. The equation of state of matter in this range is

where mn is the neutron mass.

Finally, at densities p» 6X 1015 g/cm3
, the degenerate neutron gas becomes

extreme-relativistic, and the equation of state is

It should be remembered, however, that at densities of the order of that of

nuclear matter the specifically nuclear forces (strong interaction of nucleons)

become important. In this range of densities formula (108.7) can be only

qualitative. In the present state of our knowledge concerning strong inter-

actions we can draw no definite conclusions concerning the state of matter
at densities considerably above the nuclear value. We shall merely mention
that in this range other particles besides neutrons may be expected to appear.

Since particles of each kind occupy a separate group of states, the conversion
of neutrons into other particles may be thermodynamically favoured because
of the decrease in the limiting energy of the Fermi distribution of neutrons.
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§109. Equilibrium of bodies of large mass

Let us consider a body of very large mass, the parts of which are held

together by gravitational attraction. Actual bodies of large mass that are

known to us, namely the stars, continuously radiate energy and are certainly

not in thermal equilibrium. It is, however, of fundamental interest to discuss

an equilibrium body of large mass. We shall neglect the effect of temperature

on the equation of state, i.e. consider a body at absolute zero—a "cold" body.

Since in actual conditions the temperature of the outer surface is considerably

lower than the internal temperature, a discussion of a body with a constant

non-zero temperature is in any case devoid of physical meaning.

We shall further assume that the body is not rotating; then it will be

spherical in equilibrium, and the density distribution will be symmetrical

about the centre.

The equilibrium distribution of density (and of the other thermodynamic

quantities) in the body will be determined by the following equations. The

Newtonian gravitational potential </> satisfies the differential equation A<£ =

AtlGq, where q is the density of the substance and G the Newtonian con-

stant of gravitation. In the case of spherical symmetry,

Moreover, in thermal equilibrium the condition (25.2) must be satisfied. In

the gravitational field the potential energy of a particle of the body of mass

m' is m'cf), and so we have

fi+ rrt'cf) = constant, (109.2)

where for brevity the suffix zero is omitted from the chemical potential of the

substance in the absence of the field. Expressing
<f>

in terms of ft by means of

(109.2) and substituting in (109.1), we have

is^t)--*""'6* (1093)

As the mass of the gravitating body increases, so of course does its mean

density, as the following calculations will confirm. When the total mass M
of the body is sufficiently large, therefore, we can, as shown in §108, regard

the substance as a degenerate electron Fermi gas, initially non-relativistic

and then at still greater masses relativistic.

The chemical potential of a non-relativistic degenerate electron gas is rela-

ted to the density q of the body by

2 mem 2/3
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see formula (56.3), with q = m'N/V (m' is the mass per electron and m
e
the

electron mass). Expressing q in terms of ft and substituting in (109.3), we have
1-

The physically meaningful solutions of this equation must not have singular-

ities at the origin: (j,
— constant for r -* 0. This requirement necessarily

imposes on the first derivative the condition

d/*/dr = for r = 0, (109.6)

as follows immediately from equation (109.5) after integration over r:

r

= -\[r*[i*l*&r.
dr ~

r 2
J

A number of important results can be derived from equation (109.5) by

simple dimensional considerations. The solution of (109.5) contains only two

constants, A and (for instance) the radius R of the body, a knowledge of

which uniquely defines the solution. From these two quantities we can form

only one quantity with the dimensions of length, the radius R itself, and one

with the dimensions of energy, 1/A2/?4 (the constant A having dimensions

cm-2 erg~T). It is therefore clear that the function fj,(r) must have the form

*>-**? (*)>
(109 -7)

where/is some function of the dimensionless ratio r/R only. Since the density

q is proportional to fi
3li

, the density distribution must be of the form

, N constant _ / r \
efr> =—¥— f

{r}

t It is easy to see that, for an electrically neutral gas consisting of electrons and atomic

nuclei, the equilibrium condition can be written in the form (109.2) with the electron chem-

ical potential as ft and the mass per electron as m'. For the derivation of this equilibrium

condition (§25) involves considering the transport of an infinitesimal amount of substance

from one place to another. In a gas consisting of both positively and negatively charged

particles, such transport must be regarded as that of a certain quantity of neutral matter

(i.e. electrons and nuclei together). The separation of the positive and negative charges is

energetically very unfavourable, because of the resulting very large electric fields. We there-

fore obtain the equilibrium condition in the form

^nuc+Z^e ,+ (mnac+Zme,)^ =

(with Z electrons per nucleus). Owing to the large mass of the nuclei (compared with that

of the electrons) their chemical potential is very small compared with fiel . Neglecting /iBUC

and dividing the equation by Z, we obtain

pel + m'(f> = 0.

If the atomic weight of the nuclei is assumed to be approximately twice their atomic

number, m' can be taken as twice the proton mass (m' = 2mp).
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Thus, when the size of the sphere varies, the density distribution in it

remains similar in form, the density at corresponding points being inversely

proportional to R*. In particular, the mean density of the sphere is inversely

proportional to R*

:

q ~ 1/R*.

The total mass M of the body is therefore inversely proportional to the cube

of the radius

:

M~ l/Rs .

These two relations may also be written

i?~M-i, o ~ M2
. (109.8)

Thus the dimensions of an equilibrium sphere are inversely proportional to

the cube root of its total mass, and the mean density is proportional to the

square of the mass. The latter result confirms the assumption made above

that the density of a gravitating body increases as its mass increases.

The fact that a gravitating sphere of non-relativistic degenerate Fermi gas

can be in equilibrium for any total mass M can be seen a priori from the fol-

lowing qualitative argument. The total kinetic energy of the particles in such

a gas is proportional to N(NjV)2,z
(see (56.6)), or, what is the same thing, to

M5I3/R2
, and the gravitational energy of the gas as a whole is negative and

proportional to M2jR. The sum of two such expressions can have a minimum

(as a function of R) for any M, and at the minimum R ~ M~*.

Substituting (109.7) in (109.5) and using the dimensionless variable I = r/R,

we find that the function/(£) satisfies the equation

?ai(p 3?)
= -/M (m9)

with the boundary conditions /'(0) = 0, /(l) = 0. This equation cannot be

solved analytically, and must be integrated numerically. It may be mentioned

that as a result we find /(0) = 178.2, /'(l) = -132.4.

Using these numerical values it is easy to determine the value of the con-

stant Mi?3
. Multiplying equation (109.1) by r

2 dr and integrating from to R,

we obtain

GM = R2[d<j>/drUR = -(R2/m')[d[*/drUR = -f'(l)/m'X2R\

whence*

MR3 = 91M6/G3me
3m' 5

. (109.10)

t In §108 we have seen that matter may be regarded as a non-relativistic degenerate

electron gas at densities q » 20Z2 g/cm3
. If this inequality is satisfied for the mean density

of the sphere considered, its mass must satisfy the condition M » 5Xl0 -3 ZO, where

© = 2X 1033 g is the Sun's mass, and m'is taken equal to twice the mass of the proton.

The corresponding radii are less than 5 X 104 Z ~i km.
For reference it may be noted that (with tri = 2m ) MR3 = 1.40X 10 60 g-cm3

.
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Finally, the ratio of the central density q(Q) to the mean density q = 3M/4nR3

is easily found to be

q(0)/q= -/3/2(0)/3/'(l) = 5.99. (109.11)

Curve 1 in Fig. 51 shows the ratio Q(r)lo(0) as a function of r/R.

Let us now examine the equilibrium of a sphere consisting of a degenerate

extreme-relativistic electron gas. The total kinetic energy of the particles of

such a gas is proportional to N(N/V)$(see (58.3)), and hence to Mi,3jR; the

gravitational energy is proportional to —M2/R. Thus the two quantities de-

pend on R in the same manner, and their sum will also be of the form con-

stant /R. It follows that the body cannot be in equilibrium: if the constant is
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positive, the body will tend to expand until the gas becomes non-relativistic ; if

the constant is negative, a decrease of R to zero corresponds to a decreased

total energy, i.e. the body will contract without limit. The body can be in

equilibrium only in the special case where the constant is zero, and the equi-

librium is then neutral, the value ofR being arbitrary.

This qualitative argument is, of course, entirely confirmed by exact quanti-

tative analysis. The chemical potential of the relativistic gas considered is

related to the density by

(i = (37i2)$hc(Q/m')$. (109.12)

(see (58.2)). Instead of (109.5) we now have

1 A
r
2 dr ('?)--<"

4Gm'2

2>nczh3
(109.13)
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Since A now has dimensions erg
~ 2 cm ~ 2

, we find that the chemical potential

as a function of r must be of the form

Ry/X f \R)'

and the density distribution

constant ^ / r \
e(')=—a—F^R3

Thus the mean density is inversely proportional to R3
, and the total mass

M ~ R3
q is independent ofR :

q ~ l/R3
, M = constant = M . (109.15)

Afois the only value of the mass for which equilibrium is possible: forM >MQ

the body will tend to contract indefinitely, and for M < Mo it will expand.

For an exact calculation of the "critical mass" Mo, it is necessary to inte-

grate numerically the equation

h cl (*
2

%)
= ~/3

'

/,(0) = °' /(1) = °' (mi6)

which is satisfied by the function /(£) in (109.14). The result is /(0) = 6.897,

/'(l) = -2.018. For the total mass we find

GMo = *W/dr]r=B = -/'(l)/mV^,
whence

3 1 lhc\M
Mo =^^A (109.17)

3.1 (fic\

~ m'*\G}

Putting m' equal to twice the proton mass, we find Mo = 1.45 . Finally, the

ratio of the central density to the mean density is q(0)/q = —P(0)/3f'(\) =
54.2. Curve 2 in Fig. 51 shows Q(r)/g(0) in the extreme relativistic case as a

function of r/R.

The results obtained above concerning the relation between the mass and

the radius of a "cold" spherical body in equilibrium can be represented by a

single relationM = M(R) for all radii R. For large R (and therefore for small

densities), the electron gas may be regarded as non-relativistic, and the func-

tion M(R) decreases as l/R3
. When R is sufficiently small, however, the den-

sity is so large that we have the extreme relativistic case, and the function

M(R) is almost a constantM ; strictly M(R) -* 7l/ wheni? -> 0. Fig. 52 shows

the curve M = M(R) calculated with m' = 2m
p
? It should be noted that the

t The intermediate part of the curve is constructed by numerical integration of equation

(109.3) with the exact equation of state for a degenerate gas, i.e. with the chemical potential

related to the density by

q = m'p *lteW = 3^3 (§—m>'c2
)

>

where p is the Fermi limiting momentum.
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limiting value 1.45 O is reached only very gradually; this is because the density

decreases rapidly away from the centre of the body, and so the extreme rela-

tivistic case may hold near the centre while the gas remains non-relativistic

in a considerable part of the volume of the body. We may also mention that

the initial part of the curve {R small) has no real physical significance : at

sufficiently small radii the density becomes so large that nuclear reactions

begin to occur. The pressure will then increase with density less rapidly than

q
aI3

, and for such an equation of state no equilibrium is possible. 1
"

©
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Finally, this curve also has no meaning for large values of R (and small M) :

as has already been mentioned (see the second footnote to this section), in

this range the equation of state used above becomes invalid. Here it should be

pointed out that there is an upper limit to the possible size of a "cold" body,

since on the curve in Fig. 52 large dimensions of the body correspond to small

masses and small densities, but when the density is sufficiently small the sub-

stance will be in the ordinary "atomic" state and will be solid at the low tem-

peratures here considered. The dimensions of a body consisting of such a

substance will obviously decrease as its mass decreases further, and not

increase as shown in Fig. 52. The true curve R - R(M) must therefore have

a maximum for some value of M.

The order of magnitude of the maximum radius can easily be determined

by noting that it must correspond to the density at which the interaction

t If the chemical potential is proportional to a power of the density, ft ~ Q
n (and so

P ~ Q
n+1

), the internal energy of the body is proportional to Von+1 , i.e. to Mn+1/R3n
;

the gravitational energy is again proportional to -M 2/R. It is easy to see that for n < }
the sum of two such expressions has an extremum as a function of R, but this extremum is

a maximum, not a minimum.
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between electrons and nuclei becomes important, i.e. for q ~ (m
e
e2 /fi.

2
)
3m'Z2

(see (108.1)). Combining this with equation (109.10), we obtain

^max ~ h2/Giemem'Z
i ~ 105mp/m'Z* km. (109.18)

§110. The energy of a gravitating body

The gravitational potential energy E& of a body is given by the integral

Egr = ± j 0$ dV, (110.1)

taken over the whole volume of the body. It will, however, be more convenient

for us to start from a different expression for this quantity, which may be

found as follows. Let us imagine the body to be gradually "built up" from

material brought from infinity. Let M(r) be the mass of substance within a

sphere of radius r. Let us suppose that a mass M{r) with a certain value of r

has already been brought from infinity ; then the work required to add a fur-

ther mass dM(r) is equal to the potential energy of that mass (in the form of

a spherical shell of radius r and thickness dr) in the field of the mass M(r),

i.e. — GM(r) dM(r)/r. The total gravitational energy of a sphere of radius R
is therefore

£er= _ G p>^). (I10 .2)

Differentiation of the equilibrium condition (109.2) gives

v-T- + m'^- = 0;
dr dr

the differentiation must be at constant temperature, and (d/j,/dP) T = v is the

volume per particle. The derivative —d<f>/dr is the force of attraction on unit

mass at a distance r from the centre, and equals — GM(r)/r2
. Using also the

density q = m'Jv, we have

q dr r 2

From this equation we substitute in (110.2) —GM(r)/r = (rjg) dP/dr, and

write dM(r) in the form g(r) • Anr 2 dr :

jR

EgT = An

j
r3^ dr'

o

and finally integrate by parts (bearing in mind that at the boundary of the

body P(R) = and that rsP -* Oasr - 0):

R
EgT = -12rtjPr2 dr,
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or

EgT = _3jPdK. (110.4)

Thus the gravitational energy of an equilibrium body can be expressed as an

integral ofthe pressure over the volume.

Let us apply this formula to the degenerate Fermi gases considered in §109.

We make the calculation for the general case, and take the chemical potential

of the substance to be proportional to some power of its density:

fi = Kon . (110.5)

Since dfi = v dP = (m'/o) dP, we have

P = -^r^o«+i. (110.6)
n+\ m'~ v

In the equilibrium condition fi/m' + (f)
= constant, the constant is just the

potential at the boundary of the body, where fi vanishes ; this potential is

— GM/R (M = M(R) being the total mass of the body), and so we can write

H GM

We substitute this expression in the integral (1 10. 1) which gives the gravitational

energy, and use formulae (1 10.5), (1 10.6), obtaining

1 f J¥, GM C ... K f „.. , T, GM2

E«=-M) "edr~2*
J

QdV =
-to?) en+ldV-2R

GM2n+\ r

2n
J

PdV-
2R

Finally, expressing the integral on the right in terms of 'Egv by (1 10.4), we have

F -?±1f GM2
gr
~

6/i
gr 2R

or

Thus the gravitational energy of the body can be expressed by a simple for-

mula in terms of its total mass and its radius.

A similar formula can also be obtained for the thermal internal energy E
of the body. The internal energy per particle is fi—Pv (for zero temperature

and entropy) ; the energy per unit volume is therefore

l
{l,-Pv) = it-P,

v m
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or, substituting (1 10.5) and (1 10.6),

K^ g«+i _ P
m' n+1 ~

n
'

The internal thermal energy of the whole body is therefore

Finally, the total energy of the body is

£tot = £+£gr= -^i^!. (110 .9)

For a non-relativistic degenerate gas n = f , and so 1
"

gr= ~T
_
R~' 7 HT' Aot= ~y —^-- (110.10)

In the extreme relativistic case, « = %, so that

3 C?Af2
E& = ~E = -2~PT' £tot = 0. (110.11)

The total energy is zero in this case, in accordance with the qualitative argu-

ments given in §109 concerning the equilibrium of such a body.

§111. Equilibrium of a "neutron" sphere

For a body of large mass there are two possible equilibrium states. One cor-

responds to the state of matter consisting of electrons and nuclei, as assumed

in the numerical estimates in §109. The other corresponds to the "neutron"

state of matter, in which almost all the electrons have been captured by pro-

tons and the substance may be regarded as a neutron gas. When the body is

sufficiently massive, the second possibility must always become thermodynam-

ically more favourable than the first. Although the transformation of nuclei

and electrons into free neutrons involves a considerable expenditure of energy,

when the total mass of the body is sufficiently great this is more than counter-

balanced by the release of gravitational energy owing to the decrease in size

and increase in density of the body (see below).

First of all, let us examine the conditions in which the neutron state of a

body can correspond to any thermodynamic equilibrium (which may be meta-

stable). To do this, we start from the equilibrium condition f.i+mn (f)
= con-

stant, where \i is the chemical potential (the thermodynamic potential per

neutron), mn the neutron mass, and
<f>
the gravitational potential.

t In this case 2E = —EgI , in agreement with the virial theorem of mechanics, applied

to a system of particles interacting according to Newton's law; see Mechanics, §10.
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Since the pressure must be zero at the boundary of the body, it is clear that

in an outer layer of the body the substance will be at low pressure and den-

sity and will therefore consist of electrons and nuclei. Although the thickness

of this "shell" may be comparable with the radius of the dense inner neutron

"core", the density of the outer layer is much lower, and so its total mass may

be regarded as small compared with the mass of the core.*

Let us compare the values of y,+mn<f>
at two points: in the dense core near

its boundary and near the outer boundary of the shell. The gravitational

potential at these points may be taken as - GMfR and - GMjR\ where

R and R! are the core and shell radii, andM the mass of the core, which in the

approximation used here is equal to the total mass of the body. The chemical

potential at both points is determined mainly by the internal energy (bind-

ing energy) of the corresponding particles, which is large compared with their

thermal energy. The difference between the two chemical potentials may there-

fore be taken as simply equal to the difference between the rest energy of a

neutral atom (i.e. a nucleus and Z electrons) per unit atomic weight and the

rest energy of the neutron; let this quantity be denoted by A.t Then, equating

the values of fi+

m

n4> at the two points considered, we have

mnMG(*4H-
Hence, whatever the radius jR\ the mass and radius of the neutron core must

certainly satisfy the inequality

mnMG/R>A. (111.1)

Applying the results of §109 to a spherical body consisting of a degenerate

(non-relativistic) neutron gas, we find that M and R are related by

MR? = 91M«/G3mn* = 7.2 X1051 g-cm3 (111.2)

(formula (109.10) with m
e
and m' replaced by wj. Hence expressing M in

terms of R and substituting in (111.1), we obtain an inequality for M, which

in numerical form is M > ~ 0.2©. For example, with A for oxygen we get

M > 0.17©, and for iron M > 0.18©. These masses correspond to radii

R < 26 km.

This inequality gives a lower limit of mass, beyond which the "neutron"

state of the body cannot be stable. It does not, however, ensure complete

stability; the state may be metastable. To determine the limit of metastabil-

ity, we must compare the total energies of the body in two states : the neutron

state and the electron-nucleus state. The conversion of the whole mass M
from the electron-nucleus state to the neutron state requires an expenditure

t There is, of course, no sharp boundary between the "core" and the "shell", and the

transition between them is continuous.

% Afc* is just the difference of the nucleus and neutron "packing fractions", multiplied

by the nuclear mass unit.
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of energy MAjmn to counterbalance the binding energy of the nuclei. In the

process, energy is released because of the contraction of the body; according

to formula (1 10.10), this gain ofenergy is

3GM2 t 1

U, **)'

where Rn is the radius of the body in the neutron state, given by formula

(111.2), and R
e

its radius in the electron-nucleus state, given by (109.10).

Since R
e » Rn , the quantity l/R

e
may be neglected, and we obtain the follow-

ing sufficient condition for complete stability of the neutron state of the

body (omitting the suffix in Rn)

:

3GMmn/lR>A. (111.3)

Comparing this condition with (111.1) and using (1 1 1 .2), we see that the lower
limit of mass determined by the inequality (111.3) is greater by a factor

(7/3)3/4 = 1.89 than that given by (ii 12). Numerically, the limit of

metastability of the neutron state is therefore at amassM ^ £© (and radius

R ^ 22 km).f

Let us now consider the upper limit of the range of mass values for which
a "neutron" body can be in equilibrium. If we were to use the results of §109
(formula (109.17), with mn in place of m'), the value obtained for this limit

would be 6 © . In reality, however, these results are not applicable here, for

the following reason. In a relativistic neutron gas, the kinetic energy of the

particles is of the order of, or greater than, the rest energy.? In consequence
it is no longer valid to use the Newtonian gravitational theory, and the calcu-

lations must be based on the general theory of relativity ; and, as we shall see

later, we find that the extreme relativistic case is no longer reached. The cal-

culations must therefore make use of the exact equation of state of a degen-
erate Fermi gas—the parametric equation derived in §58, Problem 3.

The calculations are effected by numerical integration of the equations of

a spherically symmetric static gravitational field, and the results are as fol-

lows. 11

The limiting mass of a neutron sphere in equilibrium is found to be only

^max = 0.760, and this value is reached at a finite radius Rmin = 9.42 km.
Fig. 53 shows a graph of the relation obtained between the mass M and the

radius R. Stable neutron spheres of larger mass or smaller radius cannot,

t The mean density of the body is then 1.4X 101S g/cm3
, and so the neutron gas may in

fact still be regarded as non-relativistic, and the formulae used here are still valid.

t In the relativistic electron gas, the kinetic energy of the particles is comparable with
the rest energy of the electrons, but is still small in comparison with the rest energy of the
nuclei, which contribute most of the mass of the substance.

1

1
The details of the calculations are given in the original paper by J. R. Oppenheimer

and G. M. Volkoff, Physical Review 55, 374, 1939.
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therefore, exist. It should be mentioned that the mass M here denotes the

product M = Nmn, where N is the total number of particles (i.e neutrons)

in the sphere. This quantity is not equal to the gravitational mass M^ of the

body, which determines the gravitational field created by it in the surrounding

space. Because of the "gravitational mass defect", in stable states we always

have AfCT < M (in particular, for R = Rmm* -***gr
0.95M).
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Fig. 53

The question arises of the behaviour of a spherical body of mass exceeding

^max- It: is clear a priori that such a body must tend to contract indefinitely

{gravitational collapse). The discovery of the nature and course of such a

process requires an investigation of the non-stationary solutions of the gravi-

tational equations. This can be carried out in a closed analytical form only

for the simple case of matter in the form of "dust", with equation of state

P = 0. Although such a description of matter is certainly inadequate for the

later stages of contraction, the solution of such a problem still seems to

give a correct idea of the nature of the process even for the general case of the

exact equation of state. It is found that, as viewed by a distant observer (with

a Galilean frame of reference at infinity), the sphere contracts in such a way
that as t -* oo its radius tends asymptotically to the value 2MgrG/c

2 (called the

gravitational radius of the body). The external observer's infinite time corre-

sponds to a finite proper time in the local frame of reference ; beyond this time,

the matter continues to "fall" inward and reaches the centre, still after a finite

interval of proper time.*

t The point R = Rmia in Fig. 53 is in fact a maximum on the curve M = M(R). This
curve continues beyond the maximum as an inward spiral which asymptotically approaches
a centre. The parameter which increases monotonically along the curve is the density at the

centre of the sphere, which tends to infinity for a sphere corresponding to the limiting point
of the spiral; see N. A. Dmitriev and S. A. Kholin, Voprosy kosmogonii 9, 254, 1963.

However, no part of the curve for R < Rmla corresponds to a stable state of the sphere.

JThe details are given in the original paper by J. R. Oppenheimer and H. Snyder,
Physical Review 56, 455, 1939. See also The Classical Theory of Fields, §97, Problem 5;

E. M. Lifshttz and I. M. Khalatnikov, Soviet Physics JETP 12, 108, 1961.
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It should be noted that the possibility in principle of gravitational collapse,

which (for the model considered of a spherical body) is unavoidable for

M > Mmzx , is not in fact restricted to large masses. A "collapsing" state

exists for any mass, but for M < A/"max it is separated by a very high energy

barrier from the static equilibrium state.
1.

t See Ya. B. Zel'dovich, Soviet Physics JETP 15, 446, 1962.



CHAPTER XII

FLUCTUATIONS

§112. The Gaussian distribution

It has already been stressed several times that the physical quantities which

describe a macroscopic body in equilibrium are, almost always, very nearly

equal to their mean values. Nevertheless, deviations from the mean values,

though small, do occur (quantities are said to fluctuate), and the problem

arises of finding the probability distribution of these deviations.

Let us consider some closed system, and let x be some physical quantity

describing the system as a whole or some part of it (in the former case x must

not, of course, be a quantity which is strictly constant for a closed system,

such as its energy). In what follows it will be convenient to suppose that the

mean value x has already been subtracted from x, and so we shall everywhere

assume that x = 0.

The discussion in §7 has shown that, if the entropy of a system is formally

regarded as a function of the exact values of the energies of the subsystems,

the function es will give the probability distribution for these energies (for-

mula (7.17)). It is easy to see, however, that the discussion made no use of any

specific properties of the energy. Similar arguments will therefore show that

the probability for a quantity x to have a value in the interval from x to x+ dx

is proportional to e8^, where S(x) is the entropy formally regarded as a

function of the exact value of x. Denoting this probability by w(x) dx, we

have*

w(jc) = constantXeS(*>. (112.1)

Before proceeding to examine the consequences of this formula, let us con-

sider its range of applicability. All the arguments leading to formula (112.1)

tacitly assume that the quantity x behaves classically.! We must therefore

find a condition which ensures that quantum effects are negligible.

As we know from quantum mechanics, the relation AE Ax ~ hx exists

between the quantum uncertainties of energy and of some quantity x, x being

the classical rate of change of jc."

t This formula was first applied to the study of fluctuations by A. Einstein (1910).

% This does not mean, of course, that the whole system must be a classical one. Variables

other than x pertaining to the system may have quantum behaviour.

II See Quantum Mechanics, §16.

343
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Let t be a time
f
expressing the rate of change of the quantity x which is

considered here and which has a non-equilibrium value; then x ~ xfty and so

AEAx ~ hx/x. It is clear that the quantity x may be said to have a definite

value only if its quantum uncertainty is small: Ax « x, whence AE^> h\x.

Thus the quantum uncertainty of energy must be large in comparison with

h\x. The entropy of the system will then have uncertainty AS» H/xT.

If formula (112.1) is to be meaningful, it is clearly necessary for the uncer-

tainty of entropy to be small compared with unity

:

r»^/r, t^>hiT. (112.2)

This is the required condition. When the temperature is too low or when the

quantity x varies too rapidly (r is too small) the fluctuations cannot be

treated thermodynamically, and the purely quantum fluctuations become of

major importance.

Let us now return to formula (112.1). The entropy S has a maximum for

x = x = 0. Hence dS/dx = and d2S/dx2 < for x = 0. In fluctuations the

quantity x is very small. Expanding S(x) in powers of x and retaining only

terms of up to the second order, we obtain S(x) = 5(0) -ifix*, where £ is a

positive constant. Substitution in (112.1) gives the probability distribution in

the form

w(x) dx = Ae-Wx*dx.

The normalisation constant A is given by the condition

oo

A
f
e-W*'dx = 1.

Although we have used here the expression for w(x) which is valid for small x-

the integrand decreases so rapidly with increasing |*| that the range of inte-

gration may be extended from - °o to °°. The integration gives A = \/(P/2n).

Thus the probability distribution of the various values of the fluctuation

x is given by the formula

w(x) dx = yj (p/lji^-iPx* dx. (1 12.3)

Such a distribution is called a Gaussian distribution. It has a maximum when
x = and decreases rapidly and symmetrically as |jc| increases on either side

ofthe maximum.

t The time t need not be the same as the relaxation time for equilibrium to be reached
with respect to x, and may be less than this time if x approaches x in an oscillatory manner*
For example, if we consider the variation of pressure in a small region of the body (with

linear dimensions ~a), t will be of the order of the period of acoustic vibrations with
wavelength X ~ a, i.e. t ~ ale, where c is the velocity of sound.
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The mean square fluctuation is

~x
2 = j£-l x2e~^x2 dx = j. (112.4)

— oo

Thus /? = 1 jx2, and we can write the Gaussian distribution in the form

w(x) dx = ^_

^

exp
(
—= ) djc. (1 12.5)

1
/ -»-2

y/Qjtx*)

As we should expect, the smaller x2 , the sharper is the maximum of w(x).

Knowing the mean square x2
, we can find the corresponding quantity for

any function <f>(x). Since x is small, we have

A<{) = [d(}>/dx]x= x,

and so

(AW2 = [W/dx)2L=0^. (112.6)

§113. The Gaussian distribution for more than one variable

In §1 12 we have discussed the probability of a deviation of any one thermo-

dynamic quantity from its mean value, disregarding the values of other quan-

tities.
1" In a similar manner we can determine the probability of a simultane-

ous deviation of several thermodynamic quantities from their mean values.

Let these deviations be denoted by x\, x%, . .
. , xn .

We define the entropy S(xi, . .
. , *„) as a function of the quantities xi,

x2, . .
. , xn and write the probability distribution in the form w dx± . . . dxn,

with w given by (112.1). Let S be expanded in powers of the x
t ; as far as the

second-order terms, the difference S—S is a negative-definite quadratic

form:
n

S— So = —i X Pihxixh
i, fc=l

(clearly flih
= /S

fti
). In the rest of this section we shall omit the summation

sign, and summation from 1 to n over all repeated suffixes will be implied.

Thus we write

S-S = -itexft. (113.1)

Substituting this expression in (112.1), we obtain for the required probability

distribution

w = Ae-W<*x ix*. (113.2)

t This means that the function S(x) used in §112 was the greatest possible value of the
entropy for the given non-equilibrium value of x.
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The constant A is determined from the normalisation condition

A
J ...

J*
e-*fc**«** dxi .. . dxn = 1.

Here, for the same reasons as in §1 12, the integration over each x
t
can be taker

from — oo to °°. To calculate this integral we proceed as follows. The linean

transformation

Xi = aihx'k (113.3)

of xi, x2 ,
. .

.
, xn converts the quadratic form ^ihx{

xk into a sum of squares

x\x\ = xf^^ (where dik
= if i ^ A: and 1 if i = A:) ifthe transformation

coefficients aik satisfy the relations ^i}i
a

il
akm = dlm , as is easily seen by sub-

stituting (113.3) in ^ihxt
xh . The determinant of the sums aublk is the product

of the determinants
|
aik |

and
|
bik |, and similarly for a greater number of deter-

minants. Since the determinant
|
d
ik |

= 1, the above relation between the /S
ift

and the transformation coefficients in (113.3) shows that

0a* =1, (113.4)

where /? and a denote the determinants
|
/8ift |

and
|
aik |.

When the transformation is applied to the normalisation integral, the

result is

Aa J ... / <?-**'<*'< dx'j ...dx'n = 1,

— oo — oo

since the Jacobian d(xu . . . ,xn)Jd(x
,

l> . . . ,^J = a. This integral now separates

into a product of n integrals; calculating them and using the relation (113.4),

we obtain

A = (27i)-*"V0.

Thus we obtain finally the Gaussian distribution for more than one variable

in the form

W = -^exp(-i i
S
iftxi

x
ft).

(H3.5)

(27T)

Let us define

and determine the mean values ofthe products x
t
Xk :

*** = (^| • • • ^xAiXfe-^^ dx 1 ... dxn .

To calculate the integral let us assume for the moment that the mean values x
i

are not zero but jci0, say. Then in (113.5) x
{
must be replaced by *i-*i0,

and
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the definition of the mean gives

x"i = T^xfr • • • Xie-**-^*--*-*) <*>-**> dxx ... dxn = x^.

Differentiating this equation with respect to xk0 and again putting xl0 , .

.

. fX^

equal to zero, we have dik on the right and the required integral on the left.

Thus

Substituting (113.6) and, for convenience, renaming the suffixes, we find

Pmlxl
xh — ^nik-

Multiplying both sides by fi~
x

im (i.e. by an element of the matrix inverse to

/?im) and summing over the suffix m gives

$
X
imfirrdxl

xh ~ P Um&mh ~ ft \k-

By the definition of the inverse matrix, /^jS^ = da , and so we have1
"

XiXh = £-i». (113.8)

Finally, let us determine X
t
Xk . According to (113.6) and (113.7), X

{
Xh

=

Pnx i
xk = AAft»andso

XiXh = fa. (113.9)

It is easy to determine also the mean square fluctuation of any function

f(xu . . . ,xn) ofthe quantities xu jc2, . . . ,xn . Since the deviations from the mean

values are small, Af = (df/dxjx^ where the 8//9X{ denote the values of the

derivatives for xi = ... = x„ = 0. Hence

5/ 3/

or, substituting (1 13.8),

^=££^- (ll3l0)

If the fluctuations of any two of the x
t
(xi and x2 , say) are statistically

independent, the mean value xix2 is equal to the product of the mean values

jci and x2 ; since each of these is zero, so is Xi.x2 , and from (113.8) this implies

that P~\2
= 0. It is easy to see that for a Gaussian distribution the converse

theorem is also valid : if xix2 = (i.e. /S
_1

12 = °)> tne fluctuations of xi and jc2

are statistically independent. For the probability distribution w12 of the quan-

tities xi and x2 is obtained by integrating the distribution (113.5) over all the

t The quantity

XiXk/V(x{x{ xkxk)

is called the correlation of the quantities xt and xk.
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other x
i

; the result is an expression of the form

w12 = constant X exp { - Wii**~ £'12*1*2- W22x22}

(where the coefficients fi'ik
are in general different from the corresponding /S

ift).

Applying formula (113.8) to this distribution, we find that xxX2 = ^'~\z>

If x1X2 = 0, then /S'
-1

12= 0. But for a matrix of order two the vanishing of the

inverse matrix element /?'
-1

12 implies that of the element P'12 * Thus W12 sepa-

rates into a product of two independent Gaussian distributions for the quan-

tities xi and X2, which are therefore statistically independent.

§1 14. Fluctuations of the fundamental thermodynamic quantities

We shall now calculate the mean square fluctuations of the fundamental

thermodynamic quantities, pertaining to any small part of a body. This small

part must still, of course, contain a sufficient number of particles. At very low

temperatures, however, this condition may be weaker than (112.2), which

ensures that quantum fluctuations are absent, as assumed; in this case the

minimum permissible dimensions of the parts of the body will be determined

by the latter condition. t To avoid misunderstanding, it should be emphasised

that the degree of importance of quantum fluctuations has no bearing on the

influence of quantum effects on the thermodynamic quantities (or equation of

state) of the substance : the fluctuations may be purely thermodynamic while

at the same time the equation of state is given by the formulae of quantum
mechanics.

For quantities such as energy and volume, which have a purely mechanical

significance as well as a thermodynamic one, the concept of fluctuations is

self-explanatory, but it needs more precise treatment for quantities such as

entropy and temperature, whose definition necessarily involves considering

the body over finite intervals of time. For example, let S(E, V) be the equilib-

rium entropy of the body as a function of its (mean) energy and (mean)

volume. By the fluctuation of entropy we shall mean the change in the func-

tion S(E, V), formally regarded as a function of the exact (fluctuating) values

of the energy and volume.

As we have seen in the preceding sections, the probability w of a fluctuation

is proportional to e
s

', where S
t

is the total entropy of a closed system, i.e. of

the body as a whole. We can equally well say that w is proportional to e
AS

',

where AS
t
is the change in entropy in the fluctuation. According to (20.8) we

t For a matrix of order two we have

0- 1
ii = /8i»/(0i.

, -Ai&,).

% For example, for pressure fluctuations the condition r » h/T with t ~ a/c (see the

last footnote to §112) gives a =* heIT.
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have AS
t
= -RmiJT , where P^^ is the minimum work needed to carry out

reversibly the given change in the thermodynamic quantities in the small part

considered (relative to which the remainder of the body acts as a "medium").

Thus
w ~ e-fimin/r,,. (114.1)

Here we substitute for Rmin the expression

Rmin = AE-ToAS+PodV,

where AE, AS, AV are the changes in the energy, entropy and volume of the

small part of the body in the fluctuation, and T , Po the temperature and pres-

sure of the "medium", i.e. the equilibrium (mean) values of the temperature

and pressure of the body. In what follows we shall omit the suffix zero from all

quantities which are the coefficients of fluctuations; the equilibrium values

will always be meant. Thus we have

/ AE-TAS+PAV)
\n>~expj

y )• (114-2)

We may note that in this form the expression (1 14.2) is applicable to any fluc-

tuations, small or large (a large fluctuation here meaning one in which, for

example, AE is comparable with the energy of the small part of the body,

though of course still small compared with the energy of the whole body). The

application of formula (114.2) to small fluctuations (which are those gener-

ally occurring) leads to the following results.

Expanding AE in series, we obtain (cf. §21)

AE-TAS+PAV = i

It is easily seen that this expression may be written as

*
[

ASA
(H) v

+^ (w)„\ " W^-APAV).

Thus we obtain the fluctuation probability (1 14.2) in the form

(APAV-ATAS\
,11>ir .

w ~ exp /

^f
• (114.3)

From this general formula we can find the fluctuations of various thermo-

dynamic quantities. Let us first take V and T as independent variables. Then
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see (16.3). Substituting these expressions in the exponent in formula (114.3)
we find that the terms in A VAT cancel, leaving

» ~ exp {-§ (ATf+ ^.{—) 0Vf\. (114.4)

This expression separates into two factors, one depending only on AT and the
other only on A V. In other words, the fluctuations of temperature and of
volume are statistically independent, so that

ATAV=0. (114.5)

Comparing successively each of the two factors of (114.4) with the general
formula (112.5) for the Gaussian distribution, we find the following expres-
sions for the mean square fluctuations of temperaturet and volume:

Wf = T*ICv, (114.6)

JZvy= -T(dV/dP)T . (114.7)

These quantities are positive by virtue of the thermodynamic inequalities

Cv >0and(6\P/8K)r < 0.

Let us now take P and S as the independent variables in (1 14.3). Then

"-(B).-(S)«

From the formula dW = TdS+VdP,

(dV/dS)P = d*W/dPdS = (dT/dP)s ,

and so

Substitution ofA Fand AT in (1 14.3) gives

w ~ exp
{2? (w)vpr-^AS>

2

}- <114 -8>

As in (114.4), this expression is a product of factors, one depending only
on AP and the other only on AS. In other words, the fluctuations of entropy
and of pressure are statistically independent, t so that

ASAP = Q. (114.9)

t If T is measured in degrees, (AT)2 = kT2/Cv .

t The statistical independence of the pairs of quantities T, Vsmd S, P is already obvious
from the following argument. If we take x x

= AS and xt = AVas the xt in the formulae
in §113, the corresponding X{ will be Xt = AT/T, Xt = -AP/T (see §22). But xj~k =
for 1 * k according to the general formula (113.7), and this gives (114.5) and (114.9).
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For the mean square fluctuations of entropy and pressure we find

{ASf = Cp ,
(114.10)

(ZIP)2 = - T(dP/d V)s . (1 14. 1 1)

These formulae show that the mean square fluctuations of additive thermo-

dynamic quantities (volume and entropy) are proportional to the dimensions

(the volume) of those parts of the body to which they relate. Accordingly the

root-mean-square fluctuations of these quantities are proportional to the

square root of the volume, and the relative fluctuations are inversely propor-

tional to this square root, in complete agreement with the general results in

§2 (formula (2.5)). But for quantities such as temperature and pressure the

r.m.s. fluctuations themselves are inversely proportional to the square root

of the volume.

Formula (114.7) determines the fluctuation of the volume of some part of

the body, containing a certain number N of particles. Dividing both sides by

N2
, we find the volume fluctuation per particle

:

(5iW=-p(l); (U4 - 12)

This fluctuation must obviously be independent of whether we consider it for

constant volume or for constant number of particles. From (114.12) we can

therefore find the fluctuation of the number of particles in a fixed volume in

the body. Since V is then constant, we must pat A(V/N) = VA(l/N) =

= - (VfN^AN. Substitution in (1 1 4. 1 2) gives

jANf= -(TN*/V*)(dV/dP)T . (114.13)

For certain calculations it is convenient to write this formula in a different

form. Since the derivative (8F/8P)T is regarded as taken with N constant, we

write

v[dp) T „ [dp v)
T, N \

r
I T, N

The number of particles N, as a function of P, T and V, must be of the form

N = Vf(P, T), as shown by considerations of homogeneity (cf. §24); that is,

N/Visa. function of P and Tonly, and it therefore does not matter whether

N/Vis differentiated at constant N or constant V. Hence we can write

"{dp v) T^ "\*p v) T ^ v
v[dp)

6\ N\ , r / 8 N\ N /dN\

T, V

jdN\ /dP\ _ /dN\
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where we have used the equation N/V = (8P/8
J
u)

T) v , which follows from
formula (24.14): dQ = -VdP = -SdT-Ndp. Thus we have for the
fluctuation of the number of particles the formula1

"

W?=T(dN/dn)T>v . (H4.14)

A body is characterised not only by the thermodynamic quantities consid-
ered above but also by the momentum P of its macroscopic motion relative

to the medium. In a state of equilibrium there is no macroscopic motion, i.e.

P = 0. Motion may, however, result from fluctuation; let us determine the
probability of such a fluctuation. The minimum work Rmin in this case is

simply equal to the kinetic energy of the body: Rmln = P2/2M = \Mv*y

where M is its mass and v = P/Af the velocity of the macroscopic motion.
Thus the required probability is

W ~ e-Mv*/2T, (114.15)

It may be noted that the fluctuations of velocity are statistically independent
of those of the other thermodynamic quantities. The mean square fluctuation
of each Cartesian component of the velocity is equal to

(Avxf = T/M, (114.16)

and is inversely proportional to the mass of the body.

The foregoing formulae show that the mean square fluctuations of such
quantities as energy, volume, pressure and velocity vanish at absolute zero
(as the first power of the temperature). This is a general property of all thermo-
dynamic quantities which also have a purely mechanical significance, but is

not in general true of such purely thermodynamic quantities as entropy and
temperature.

Formula (114.6) for the fluctuations of temperature can also be interpreted

from a different point of view. As we know, the concept of temperature may

t This formula can also be easily derived directly from the Gibbs distribution. According
to the definition of the mean value,

If n

Differentiation of this expression with respect to fi (for constant V and T) gives

But 6^/8^ = -A; and so

which gives (114.14).

We could also use the Gibbs distribution to derive expressions for the fluctuations of the
other thermodynamic quantities.



§114 Fluctuations of the Fundamental Thermodynamic Quantities 353

be introduced through the Gibbs distribution; it is then regarded as a para-

meter defining this distribution. As applied to an isolated body, the Gibbs

distribution gives a complete description of the statistical properties, except

for the inaccuracy that it leads to very small but non-zero fluctuations of the

total energy of the body; these cannot in fact exist (see the end of §28). Con-

versely, if the energy is regarded as a given quantity, we cannot assign a defi-

nite temperature to the body, and we must suppose that the temperature

undergoes fluctuations in accordance with (1 14.6), where Cv denotes the spe-

cific heat of the body as a whole. This quantity (114.6) obviously describes

the accuracy with which the temperature of an isolated body can be defined.

PROBLEMS

Problem 1. Find the mean square fluctuation of the energy (using V and T as inde-

pendent variables).

Solution. We have

Squaring and averaging, we obtain

«-Ma-'iva+^
Problem 2. Find (A W)2 (with variables P and S).

Solution. {AW)2 = -TVKdPld^s+T2^
Problem 3. Find AT AP (with variables Fand T).

Solution. ATAP = (T2/Cv)(dP/dT) r .

Problem 4. Find AVAP (with variables V and T).

Solution. AVAP = -T.

Problem 5. Find ASAV (with variables Kand T).

Solution. AS AV = (dV/dT)PT.

Problem 6. Find AS AT (with variables V and T).

Solution. AS AT = T.

Problem 7. Find the mean square fluctuation deviation of a simple pendulum suspended

vertically.

Solution. Let / be the length of the pendulum, m its mass, and <j> the angle of deviation

from the vertical. The work Rmin is here just the mechanical work done against gravity in

the deviation of the pendulum; for small
<f>,
R

mili
= \ mg-lcj)2 . Hence

0* = T/mgl.

Problem 8. Find the mean square fluctuation deviation of the points of a stretched

string.

Solution. Let / be the length of the string, and F its tension. Let us take a point at a

distance x from one end of the string, and let y be its transverse displacement. To deter-

mine y2 we must consider the equilibrium form of the string when the displacement y of
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the point x is given; this consists of two straight segments from the fixed ends of the string
to the point x, y. The work done in such a deformation of the string is

*min = FlVix'+y^-xHFWid-xY+y^-d-x)] a ±Fy* (—+-J—) .

\x l—xj
Thus the mean square is

y^={TIFl)x{l-x).

Problem 9. Determine the mean value of the product of the fluctuation displacements
of two different points of the string.

Solution. Let ylf yt be the transverse movements of points at distances xx , x t from one
end of the string (with xz >• xx). The equilibrium form for given ylt v2 consists of three
straight segments, and the work is

from formula (113.8) we then have

y1
~y^ = (T/FI)Xl(l-x 2).

§115. Fluctuations in an ideal gas

The mean square fluctuation of the number of particles within some rela-

tively small volume in an ordinary ideal gas is found by substituting V =
= NT/P in formula (1 14. 13). This gives the simple result

{AN)* = N. (115.1)

The relative fluctuation of the number of particles is therefore just the recip-

rocal square root of the mean number of particles:

y/HAim _ 1

N y/N'

In order to calculate the fluctuation of the number of particles in an ideal

Bose or Fermi gas, we must use formula (114.14), with the expression (55.5)

substituted for AT as a function of fx, T, V, obtained by integrating the corre-

sponding distribution function. We shall not pause to write out here the fairly

lengthy expressions which result, but simply note the following point. We
have seen that, in a Bose gas at temperatures T < To (see §59), the pressure

is independent of the volume, i.e. the compressibility becomes infinite. Accord-
ing to formula (114.13) this would imply that the fluctuations of number of

particles also become infinite. This means that, in calculating fluctuations in

a gas obeying Bose statistics, the interaction between its particles cannot

be neglected at low temperatures, however weak this interaction may be.

When the interaction, which must exist in any actual gas, is taken into account,

the resulting fluctuations are finite.

Next, let us examine fluctuations in the distribution of the gas particles

over the various quantum states. We again consider the quantum states of the
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particles (including different states of their translational motion); let nk be

their occupation numbers.

Let us consider an assembly of nh particles in the fcth quantum state. Since

this set of particles is statistically independent of the remaining particles in

the gas (cf. §37), we can apply formula (1 14. 14) to it

:

For a Fermi gas we must substitute

— _ 1

nk -
e(ek-M)IT+\-

The differentiation gives

{An~^ = ĥ{\-nk). (115.3)

Similarly, for a Bose gas

{An~tf = nk(\+nh). (115.4)

For a Boltzmann gas the substitution nh = e
{fi - Ek)IT naturally gives

(Ankf = nh ,
(115.5)

which is obtained from both (1 1 5.3) and (1 1 5.4) when nk« 1

.

Summation of (115.3) or (115.4) over a group of G, neighbouring states

containing altogether N, - £ nk particles gives, by virtue of the statistical

independence (already mentioned) of the fluctuations of the various nk ,

(ZJVj» = G^{\ qp^) = tfj-O T tfj/Gj), (H5.6)

where n
]
is the common value of the neighbouring nk , and Nj = nfiY

These formulae can be applied, in particular, to black-body radiation (an

equilibrium Bose gas of photons), for which we must put fi = in (115.4).

Let us consider the set of quantum states for the photon (in a volume V) with

neighbouring frequencies in a small interval Aa>r
The number of such states

is G = VtfAcOj/nW; see (60.3). The total energy of the quanta in this fre-

quency interval is EAu)j
= JV,-*©,-. Multiplying (115.6) by (tuajf and omitting

the suffix j, we obtain the following expression for the fluctuation of the

energy EA(a of black-body radiation in a given frequency interval A(o :

{M^f = hco'EAto +n*c*{EA(uyiV(o*Am, (115.7)

a relation first derived by A. Einstein (1924).

PROBLEM

Determine (AN)2 for an electron gas at temperatures much lower than the degeneracy

temperature.

Solution. In calculating (QNjdfi)T , v we can use the expression (56.3) for fi at absolute

zero. A simple calculation gives

3^mT /* y/a
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§116. Poisson's formula

Knowing the mean square fluctuation of the number of particles in a given
volume of gas (115.1), we can write down the corresponding Gaussian proba-
bility distribution for fluctuations in this number of particles

:

This formula is, however, valid only for small fluctuations: the deviation
N—N must be small compared with the numberN itself.

If the volume selected in the gas is sufficiently small, the number of parti-

cles in it is small, and we may also consider large fluctuations, where N—N
becomes comparable with N. This problem is meaningful only for a Boltz-
mann gas, since in a Fermi or Bose gas the probability of such fluctuations
can become appreciable only in volumes so small that quantum fluctuations
become important.

The solution of this problem is most simply found as follows. Let V and
No be the total volume of the gas and the number of particles in it, and V a
part of the volume, small compared with VQ . Since the gas is uniform, the
probability that any given particle is in the volume V is obviously just the
ratio V/Vo, and the probability that N given particles are simultaneously pres-
ent in it is (V/V )

N
. Similarly, the probability that a particle is not in the

volume Fis (V - V)/V
, and the same probability for N -N given particles

simultaneously is [(V - V)/V
]

N°-N
. The probability wN that the volume V

containsN molecules in all is therefore given by

N l (V\ N / V\ N*- N
*» = NKNo^Njl (f„)

l

1 -^) ' <116 -2)

where a factor has been included which gives the number of possible ways of
choosingN out ofN particles.

In the case under consideration, V« V , and the number N, though it may
differ considerably from its mean value N, is of course assumed small com-
pared with the total number N of particles in the gas. Then we may put
iVo! ^ (No-N)lN£ and neglect N in the exponent N -N, obtaining

But NoV/Vo is just the mean number N of particles in the volume V. Hence

NN / N\ N°
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Finally, using the well-known formula

lim
n-*-«»HT-

we replace (1 -N/N )
N

° with N large by *-* and obtain the required proba-
bility distribution in the form1

NNe~N
~Nl

wn= v . • (116.3)

This is called PoissorCs formula. It is easily seen to satisfy the normalisation
condition

f *n = I-

AT=0

From this distribution we can calculate the mean square fluctuation of the
number of particles:

iv=o
A

i£i(tf-l)! Afe2
(Ar-2)!

+ e
A(^V-l)!

Hence we find as before

(AN)2 = N*-N* = N, (1 16.4)

and the mean square fluctuation of the number of particles is equal toN for
any value ofN, and not only for large values.

We may note that formula (116.3) can also be derived directly from the
Gibbs distribution. According to the latter, the distribution ofN gas parti-

cles, considered simultaneously, among various quantum states is given by
the expression exp {(^+^iV-£e

ft
)/r}, where £e

ft
is the sum of the energies

of the individual particles. To derive the required probability wN we must sum
this expression over all particle states "belonging" to a given volume V. If we
sum over the states of each particle independently, the result must be divided
by Nl (cf. §41), giving

eOIT
wN = jfr(Z

e{M~ek)IT

)

N
-

The sum is just the mean number of particles in the volume considered:

Vgl/'-'iF = N.
k

t For small fluctuations (\N-N\ « N with N large), this formula naturally becomes
< 116.1). This is easily seen by using Stirling's asymptotic expression for the factorial of
a large number N, N\ = V(2nN)-N*e~x, and expanding log wH in powers of N-N.
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Thus we find

wN = constantXNN/Nl,

and the normalisation condition then shows that the constant is e-iV giving

again formula (1 16.3).

§117. Fluctuations in solutions

The fluctuations of thermodynamic quantities in solutions can be calculat-

ed by the same method as that used in §1 14 for fluctuations in bodies consist-

ing of identical particles. The calculations are considerably simplified by the

following argument.

Let us take some small part of the solution, containing a given number N
of solvent molecules, and try to calculate the mean fluctuation of the number
n of solute molecules in that part of the solution or, what is the same thing, the

fluctuation of the concentration c = njN in that part. To do so, we must

consider the most complete equilibrium of the solution that is possible for

a given non-equilibrium value of n; cf. the first footnote to §113. Taking a

given value of the concentration does not affect the establishment of equilib-

rium between the small part considered and the remainder of the solution as

regards exchange of energy between them or change in their volumes. The

former means (see §9) that the temperature remains constant throughout the

solution; the latter means that the pressure remains constant throughout the

solution (§12). Thus to calculate the mean square {Ac)2 , it is sufficient to con-

sider the fluctuations of concentration occurring at constant temperature and

pressure.

This fact in itself signifies that the fluctuations of concentration are statis-

tically independent of those of temperature and pressure, i.e.*

ATAc = 0, AcAP=Q. (H7.1)

The minimum work necessary to change the number n by An at constant press-

ure and temperature is, by (98.1), i?m jn = A&— fi'An, where ft' is the chem-

ical potential of the solute. ExpandingA& in powers ofAn, we have

""©,. r
* +©„*^-'*+®„

t That is, Q = —PV = —NT, in accordance with the equation of state of an ideal gas.

% This may be more rigorously proved by the method indicated in the third footnote to

§114. Using the formula dE = TdS-PdV+u'dn (with N constant), we can rewrite (98.1) as

di?min - (T- T ) dS-(P-P ) d V+ (fi' - fi' ) dn.

Thus, if we take x t
= AS, x 2

= AV, jc3
= An, the corresponding X{ are Xx = AT/T,.

X2
= -AP/T, X3

= A/u'/T. The equations (117.1) then follow, since ^3^ = 0, x3X2 = 0.
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and hence

Substituting this expression in the general formula (114.1) and comparing

with the Gaussian distribution formula (112.5), we obtain for the required

square of the fluctuation of the number n

KZin)
{dt*'/dn)ptT

'

or, dividing by iV2, for the mean square fluctuation of concentration

Ucf = T- .
(117.3)

The latter expression is inversely proportional to the amount of matter (N) in

the small part considered, as it should be (see the discussion following

(114.11)).

For weak solutions, dp'/dn = T/n, and formula (1 17.2) gives

(Anf = n. (117.4)

It should be noticed that there is a complete analogy (as was to be expected)

with formula (115.1) for the fluctuations of the number of particles in an ideal

gas.

§118. Correlations of fluctuations

The statement that in a homogeneous isotropic substance (gas or liquid) all

positions of the particles in space are equally probable applies to any given

particle on condition that all other particles can occupy arbitrary positions,

and is not, of course, in contradiction with the fact that the interaction between

different particles must in fact cause some correlation in their positions. The
latter means that, if we consider, say, two particles simultaneously, then for

a given position of one particle the various positions of the other will not be

equally probable.

To simplify the formulae below we shall consider only a monatomic sub-

stance, in which the position of each particle is fully determined by its three

co-ordinates.

Let ndV denote the number of particles present in a volume element dV at

a given instant. Since dV is infinitesimal, it cannot contain more than one

particle at a time; the probability of finding two particles in it at once is an

infinitesimal quantity of a higher order. The mean number of particles n dV
is therefore also the probability that a particle is present in dV.
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Let us consider the mean value

(«i-"i)("2-«2) = «i«2-(«)2, (118.1)

where «i and w2 are the particle number densities n(r) at two different points in

space, and n denotes the mean density, which is the same at every point

("i
= "2 — ") owmS to tne homogeneity of the body. If there were no correla-

tion between the positions of different particles, we should have n
x
n
2
= n^ • n~

2
—

(«)
2
, and the mean value (118.1) would be zero. Thus this quantity can serve

as a measure of the correlation.

Let n 12 dV2 denote the probability that there is a particle in the volume

element dV2 when there is one in dVx ; nX2 is a function of the magnitude

r =
I

r2— 1\
I

of the distance between the two elements.

Since, as already mentioned, the number n dV is or 1, it is evident that

the mean value

«i dVx'iti dV2 = «i dFi-«i2 dV2 ,

or

«1«2 = Wi2«.

In this relation, valid when ri ^ r2 , we cannot, however, go to the limit

r2 -* ri, since the derivation ignores the fact that, if the points 1 and 2 coin-

cide, a particle in d^i is also in dV%. A relation which takes account of this

is clearly

«i«2 = nn 12 -t-nd(r2 —Ti). (118.2)

For let us take a small volume AV, multiply (118.2) by dVy dV2 , and integrate

over AV. The term nn\2 then gives a second-order small quantity (propor-

tional to (AV)2
); the term containing the delta function gives AV, i.e. a first-

order quantity. Thus we obtain

2

ndV\ =nAV,

as we should, since only or 1 particle can be in the small volume, as far as

first-order quantities. Substitution of (118.2) in (118.1) gives

(«i-«i)(n2 -«2) = ndiri-Tj+nvir), (118.3)

where

v(r) = n 12-n (118.4)

is a function called the correlation function. It is evident that the correlation

must tend to zero when the distance r increases to infinity:

K~) = 0. (118.5)
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Let us now consider a finite volume V'm the body, multiply equation (1 18.3)
by d Vx d V2 and integrate over Vx and F2 . Since

(«i-«i)dFi = (« 2-«2)dF2 = #_# = AN,

where TV is the total number of particles in the volume V (so that nV = N),
we find

if
v(r)dVx dV2 = ^l_-V.

\

Changing from the integration over Vx and V2 to one over Vlt say, and the
relative co-ordinates r = r2 -r! (the product of whose differentials we denote
by dV), and bearing in mind that v depends only on r, we have finally the
following expression for the integral of the correlation function:

vdV^-^L—l. (ll8 . 6)

Thus the integral of the correlation function over a certain volume is
related to the mean square fluctuation of the total number of particles in that
volume. Using for the latter the thermodynamic formula (1 14.13), we can
express the integral in terms of the thermodynamic quantities:

Av TN /dV\vdK=
-F*(ep)

r

- L (118 -7)

In an ordinary (classical) ideal gas this gives
J

v dV = 0, as it should: it is
evident that in an ideal gas treated by classical mechanics there is no correla-
tion between the positions of different particles, since the particles of an
ideal gas are assumed not to interact with one another.
On the other hand, in a liquid (at temperatures not close to the critical

point) the first term in (118.7) is small compared with unity, because the
compressibility of a liquid is small. In this case we can write J vdV ^ -1.
This value of the integral of the correlation function corresponds in a sense
to the mutual impenetrability of the liquid particles, regarded as closely
packed solid spheres.

Next, let us multiply both sides of (118.3) by e_ik,r = e
- ik-(r*- ri) and

again integrate over Vx and V2 . The result is

I

or

(ni-n)(n 2 -n)eik-^-^) dVidVz =N+N [ ve-*'* dV,

nV(\+ ive-^^dvY (118.8)
(n-n)e- ik'*dV

This relation gives the Fourier components of the correlation function
terms of the mean squares of the Fourier components of the density ».

m
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§119. Fluctuations at the critical point

At the critical point, the compressibility (dV/dP) T and the specific heat

C of a substance become infinite (§84). The expressions (1 14.7) and (1 14.10)

for the fluctuations of volume (i.e. of density) and of entropy likewise form-

ally become infinite, but the fluctuations of temperature and of pressure

remain finite. This means that at the critical point the fluctuations of density

and entropy become anomalously large, and to calculate them i?min in for-

mula (114.1) must be expanded as far as terms of a higher order of smallness

than the second-order terms, which in this case vanish. 1" Here we shall discuss

in detail the fluctuations of density near the critical point (Ornstein and

Zernike 1917).

Since the fluctuations of density and temperature are statistically independ-

ent, the temperature may be regarded as constant in considering the fluctua-

tions of density. The total volume of the body is also constant, by definition.

Under these conditions the minimum work Rm]n is equal to the change

AF
t
in the total free energy of the body during the fluctuation, so that the

probability of the fluctuation may be written as

w>~ e-^/T (119.1)

The total free energy of the body can be written as the integral F
t
= jFdV

over the whole volume of the body, F denoting the free energy per unit

volume. Let F be the mean value of F, constant throughout the body. The

fluctuation causes i^to vary from point to point in the body, like the density,

and

AF
t
=[(F-F)dV. (H9.2)

Let the particle number density be n, its mean value n, and let us expand

F—F in powers of n — n at constant temperature.

The first term of the expansion is proportional to n-n and gives zero on

integration over the volume, since the total number of particles in the body

is constant:jndV=jndV. The second-order term is of the form $a(n - nf,

the positive coefficient a becoming zero at the critical point itself and being a

small quantity near that point.* The coefficient in the third-order term is

also small near the critical point (since both dP/dn and 82P/9n2 are zero at

that point), and so the fourth-order term would have to be taken into account.

tThe same is true of the fluctuations of concentration in solutions: at points on the

critical line, (dfi'/dc)P , T = (§98), and the expression (117.3) becomes infinite.

X The derivative (dF/dn)T is the chemical potential, and so the second derivative is

°~ \dn2
) T \dn)T n \6«
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In fact, however, the expansion ofF-F contains terms of another type which
are larger.

The reason is that so far we have always considered the thermodynamic
quantities for homogeneous bodies. In an inhomogeneous body, the expan-
sion of F may contain not only various powers of the density itself, but also

those of its successive derivatives with respect to the co-ordinates. Because of
the isotropy of the body, the first derivatives can appear in the expansion in

terms of density only through the scalar combination (v«)2
, and the second

derivatives only in the Laplacian An. The integral over the volume of a term
constant X An becomes an integral over the surface of the body, and repre-

sents a surface effect of no importance here. The integral of a term nAn is

equivalent to that of (v«)2
. Thus without loss of generality we can put

F-F = ia(n-nf+^b(vnf, (119.3)

where b is a positive constant; if b < the free energy could not have a
minimum corresponding to n = constant. The quantity b need not be zero

at the critical point and so is not small near that point.

The calculation of the mean fluctuations of density in particular small
regions of the body is of relatively little interest; since (119.3) includes a
term in the derivatives of the density, these fluctuations will depend on the

shape of the region as well as on its size.f The problem of the fluctuations

of the Fourier components of density near the critical point is of much
greater interest.

Let us expand n-nasa Fourier series within the volume V of the body,
writing it as

n-n = 5>k«?ik
'r

; (119.4)
k

the components of the vector k take both positive and negative values, and
the coefficients

«k =i7 (n-«)e-*r dFv\ (n~"

are related by n_k = nk*, which follows from the fact that n-n is real.

Substituting (119.4) in (119.3) and integrating over the volume, we have

AF
t
= i^Z(a+^2)|nk |2. (119.5)

k

Each term in this sum depends on only one of the wk ; the fluctuations of
the different nk are therefore statistically independent. Each square |«k |

2

t At the critical point itself a = 0, and only the second term remains in (1 1 9.3). If the den-
sity undergoes a fluctuation in a region of linear dimensions ~/, then F-F ~ b[(n-n)/l] 2

and AF
t ~ b(n-n)H. The mean square fluctuation of density is therefore inversely propor-

tional to /
:
{An) 2 ~ 1//, i.e. inversely proportional to the cube root of the volume of the

region, whereas away from the critical point the mean square fluctuation of density de-
creases in inverse proportion to the volume itself.
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appears in the sum (119.5) twice (for ±k), so that the probability distribution

for its fluctuations is

w expl-^(a+bk*)\nk A

Since
|
nk |

2
is the sum of the squares of two independent quantities (»k being

complex), we therefore find as the required mean square fluctuation

|wk
|

2 = T/V(a+bk2
). (119.6)

It should be emphasised that these formulae are applicable only when the

magnitude of the wave vector k is not too large ; otherwise, the expansion

(119.3) can not be restricted to terms containing only the lowest derivatives

of the density with respect to the co-ordinates.

The result derived above enables us to calculate the correlation function

v(r) (§118) near the critical point. According to the general formula (118.8)

we have

I
ve-*'r dV= — |«k

2 -l

1.
n(a+bk2

)

The first term on the right is in general large compared with unity, since

both a and k are assumed small. We can therefore write

f
ve-i*r dv = T/n(a+bk2

), (1 19.7)

and hence, by an inverse Fourier transformation, obtain*

v(r) = T^r ' -e-V(aib)r, (119.8)
47inb r

'

The coefficient of r in the exponent is small, since a is small. At the critical

point, a = 0, and so the exponential factor becomes equal to unity

:

tlf

f <fc-**
r dV = 4jt(x2+kz

), (1 >

the function <£ is

= e-f/r. (2>

This is most simply seen by noting that the function (2) satisfies the differential equation

A(j> — x2
cf> = —47id(r).

Multiplying both sides of this equation by e~ ,k'T and integrating over all space (using a
repeated integration by parts in the first term on the left), we obtain (1).



§120 Correlations of Fluctuations in an Ideal Gas 365

Thus near the critical point the correlation between the positions of different

particles in the substance decreases very slowly with increasing distance, i.e.

becomes much stronger than under ordinary conditions, where it is practically

zero even at intermolecular distances.

Concerning the whole theory of fluctuations near the critical point as given
in this section, the same reservation must be made as in §84: the proofs given
here assume that there is no important singularity in the thermodynamic
quantities at the critical point, and there can therefore be no certainty that
the results obtained are correct.

§120. Correlations of fluctuations in an ideal gas

As already mentioned in §118, in a classical ideal gas there is no correlation

between the positions of the various particles. In quantum mechanics, how-
ever, such a correlation exists because identical particles in an ideal gas
"interact" indirectly owing to the principle of symmetry of wave functions.

Correlations in a Fermi gas were first considered by V. Fursov (1937), and
those in a Bose gas by A. Galanin (1940).

To simplify the formulae below we shall at first assume that the particles

have no spin. Taking account of spin will not essentially affect the results.

The problem of calculating the correlation function can be most simply
solved by the second quantisation method. In accordance with this method1

"

we define the normalised wave functions

Vk = -^e*«, (120.1)

which describe states of a gas particle moving freely in a volume V with

momentum p = fik; in this section the wave vectors k will be used instead of

the momenta p. For a finite volume V the wave vector k takes an infinite set

of discrete values, the intervals between which are very small, however, when
V is sufficiently large.

Next, we define operators dk and dk
+ which respectively decrease and

increase by unity the numbers nk of particles in the various quantum states

ipk , and the operators

*(0 = IVkW*. ^+
0) = IVk*(r)<2k+,

k k

which respectively "remove" and "add" one particle at the point r in the

system. The operator ^(r^r) dV is the operator of the number of particles

with co-ordinates in dxdydz = dV. Hence W+W can be regarded as an

t See Quantum Mechanics, §§64, 65.
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operator n, which in the second quantisation method represents the density

of distribution of the gas particles in space

:

n = W+(t)W(t)

= II«k+^k*Vk'. (120.2)
k k'

Here the summation with respect to k and k' is over all their possible

values. It is easy to see that the "diagonal" terms of the sum (k = k') give

just the mean density n. For, since the operator dk
+dk is simply the number

nk of particles in the quantum state considered, and from (120. 1) |
y>k |

2 = 1/ V,

these terms are equal to

£<2k+<Zk|Vk|2 =— YJ
nk = NjV = n,

k V k

where N is the total number of particles in the volume V.

We can therefore write

"-" = EZ'^^k'Vk*^', (120.3)
k k'

where the prime to the summation sign denotes that the term with k' = k is

to be omitted. Using this expression, we can easily calculate the mean value

required, («i-«)(«2 -«).

This mean value is calculated in two stages. First of all, the quantum
averaging, i.e. that with respect to the quantum states of the particles, is

to be carried out. This amounts to taking the corresponding diagonal matrix
element of the quantity concerned. Multiplying together the two operators

(120.3) which belong to two different points rx and r2 , we obtain a sum of
terms containing various products of the operators dk and dk

+ taken four at

a time. But among these products only those which contain two pairs of
operators dk , dk

+ with the same suffix have diagonal matrix elements, i.e.

the relevant terms are

£ Z' ^k
+
«k'«k'

+
akVk*(ri)^k'(ri)^k'*(r2)Vk(r2). (120.4)

k k'

These terms are diagonal matrices, and

ak>ak >
+ = l^Hk', dk+dk = nk ;

here and henceforward the upper sign refers to the case of Fermi statistics

and the lower sign to that of Bose statistics. Substituting also the functions

tpk from (120.1), we obtain

v k k'
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This expression must now be averaged in the statistical sense, i.e. over the

equilibrium distribution of the particles among the various quantum states.

Since particles in different quantum states behave quite independently of one

another, the numbers nk and «k , are averaged independently, i.e.

The mean values «k are determined by the Fermi or Bose distribution func-

tion.

Thus we obtain the following expression for the required mean value

:

1

(«i-")(h2 -«) =WI Z' (1 T*k') Hk^-kO-to-ii). (120.5)
v k k'

Since, when the volume V is not too small, the wave vector k takes a

practically continuous series of values, we can change from summation to

integration, multiplying the expression (120.5) by

Vd?k Vdzk'

(2tt)3 (2tt)3
*

The integral form of (120.5) separates into two parts: the first is
f

7^6 IT %e
i(k-k'>-<r*-r'> &k' d*k

•<*-*> ^ <5(r2-n) d3k
r j

1

= —— fe**<

(2*)»J

e

(2w>
, <5(r2-n) «k dzk = «<5(r2— ri).

This is just the first term in (1 18.3). The correlation function (the second term

in (118.3)) is therefore

"CO = =F~
y6

f f «**-k').i^ n~k , d*k d*k'

= T
nilKf

?
ik ' r«k d3k (120.6)

If the spin of the particles is taken into account throughout, formula (120.2)

for the operator of the number density of particles in space must be written as

" = Z Z Z tfka
+
0k'<rV,ka*V'k'a,

a k k'

where a is the spin projection. Accordingly the expression (120.4) must also

be summed over the spin variable a, and the right-hand sides of formulae

t Here we use the formula

f e
ik * rd3

A: = (27r)3<3(r).
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(120.5) and (120.6) are therefore multiplied by g = 2s+l, with n^ the mean
number of particles in the quantum state with a given value of a, i.e.

* =
e(.-Jr± i

• 020.7)

Thus we have finally the following formula for the correlation function:

gKO = T^7
n(27r)6

Integration over the directions of k gives

v(r) = T g

r e*- r d3k
I e(e-^)/T_j_l

4:r4wr2

|* sin &r • /

e(e-M)IT

kdkl*

±1

(120.8)

(120.9)

We may also state a formula for the mean squares of the Fourier compo-
nents of the density fluctuations; this is easily obtained by substituting

v{r) from (120.8) in the general formula (118.8), and integrating over the

co-ordinates:

Un-n)e-*'*&V * = J^ f «k(l Tnk+t) d*k. (120.10)

Formula (120.8) shows first of all that in a Fermi gas v(r) < 0, but in a

Bose gas v(r) > 0. In other words, in a Bose gas the presence of a particle at

some point increases the probability that another particle is near that point,

i.e. the particles "attract" one another; in a Fermi gas they correspondingly

"repel" one another (cf. the end of §55).

If we go to the limit of classical mechanics (h — 0), the correlation function

tends to zero in accordance with the discussion at the beginning of this

section; for, as h -* 0, the frequency of the oscillating factor e
ik ' T = ei9

' Tlft

in the integrand in (120.8) increases without limit and the integral tends to

zero.t

As r -* the function v(r) tends to a finite limit : since

g
«k d3k = n,

(2»)»

(120.8) shows that

K0)= =F»/*. (120.11)

Let us apply the formulae derived above to a degenerate Fermi gas at

absolute zero. In this case the distribution function nk = 1 for k < ko and

for k > ko, where ko = pojh = (6n2nlg)
113

is the limiting momentum of the

t To avoid misunderstanding (since it might seem that h does not appear in (120.8) and

(120.9)) it must be remembered that e = p 2/2m = h2k 2/2m.
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Fermi distribution. We therefore have from (120.9)

k sin kr'dk<r) = - g
4wr4r2

o

We shall consider only distances which are greater than a certain value,

assuming in fact that kor :» 1 . Accordingly, we retain only the term in the

lowest power of 1 /r in the integral, obtaining

*)=-2fflblCos»*«'. (I2(U2>

If the rapidly varying squared cosine is averaged, this gives

*> = -*ab- (12013)

Thus the correlation function decreases inversely as the fourth power of the

distance.

PROBLEMS

Problem 1. Determine the mean squares of the Fourier components (with small wave
vectors) of the fluctuations of density in a Fermi gas at absolute zero.

Solution. The integrand in (120.10) is non-zero (and equal to unity) only at points

where n\ = 1, «k+f = 0, i.e. points in a sphere of radius k centred at the origin which

at the same time are not in a sphere of the same radius centred at f. A calculation of the

volume of this region when/ « k gives

|

[\{n-n)^' T dV I' = ^i-V= 3M4k .

I
J

!

(27r)d

Problem 2. Determine the correlation function for a Fermi gas at temperatures small

compared with the degeneracy temperature.

Solution. In the integral in (120.9) we put /x ~ e = fflkyim and transform it as

follows

:

oo oo

k sin kr~dk 8 f cos kr'dkC ksin kr-dk _ 8 j* cosfcr-dA:
~

J <?
(-«o)/T+1 - ~q7J e

(*-*o)/T+1

oo

_ 6
J*

sin kr / 1 \

~ 87 J ~~T~~ \ e
(e-e*)IT+ l)

•

fe=o

With the variable jc = fi
2k (k— k )/mT, taking into account the smallness of T and the

rapid decrease of the integrand as |
x | increases, we can write

7 =87 J 7 sin(*°r+A*r)d (l^)

8 fSinV
f Jlrr A ( 1 U
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where A = mT/h 2k . The resulting integral is transformed by the substitution l/(e*+l) = u
into Euler's beta integral, giving

8 f nkI=
d?{smhWr)

Sink°r}-

For distances r » l/k , averaging the rapidly varying squared cosine gives finally

.. 3(mT)2
. ,_/7imTr\

V(r)= -4W^ Smh
(«fc-)-

As T -* this becomes formula (120.13).

§121. Correlations of fluctuations in time

Let us consider a physical quantity which describes a body in thermo-

dynamic equilibrium, or part of such a body. This quantity will undergo small

variations in time, fluctuating about its mean value. Let x(t) again denote the

difference between the quantity and its mean value (so that x = 0).

There is some correlation between the values of x(t) at different instants

;

this means that the value of x at a given instant t affects the probabilities

of its various values at a later instant t+x. In the same way as for the spatial

correlation discussed in the preceding sections, we can characterise the time

correlation by the mean value of the product x{t)x{t+x). The averaging here

is, as usual, understood in a statistical sense, i.e. as an averaging over the

probabilities of all possible values of the quantity x at the times t and t+x.

As has been mentioned in §1, this statistical averaging is equivalent to a time

averaging— in this case, over the time t for a given value of x.

The quantity thus obtained is a function of x only ; let it be denoted by

*(t):

(p(x) = x(t)x(t+x). (121.1)

As x increases indefinitely, the correlation clearly tends to zero, and accord-

ingly the function 0(r) likewise tends to zero.

The Fourier component of the quantity x(t) is defined by*

Xl°
= 2~ *(0ei<o'df (121.2)

and the inverse relation

J-
x(t)= xwe- i(0t dco. (121.3)

t The integral as written here is in fact divergent, since x(t) does not tend to zero as

| / |
-» ~. This is, however, unimportant as regards the formal results derived below, whose

object is to calculate the mean squares, which are known to be finite.

The use of the Fourier components in this problem is due to S. M. Rytov.
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Substituting the latter relation in the definition 4>{t'-t) = x(t)x(t'), we

obtain

n(f)(t'-t)= XvX^e-W+v'^dcodco'.

If this interval is to be a function of the difference r = t'-t only, the integrand

must contain a delta function of co+co', i.e. we must have

*»*«,' = (x2)J(co+co'). (121.4)

This relation is to be regarded as the definition of the quantity symbolically

denoted by (x2)^ Although the quantities *„, are complex, (x2
)^ is clearly

real. To show this, it is sufficient to note that the expression (121.4) is zero

except when co' = —co, and taking the complex conjugate corresponds to

changing the sign of co, i.e. interchanging co and co'.

Substituting (121.4) in 4>(t) and integrating over co', we find

0(T) = f (x2)^-^ dco. (121.5)

In particular, 0(0) is just the mean square of the fluctuating quantity,

co

x2 = f (x^dco. (121.6)

— CO

We see that the "spectral density" of the mean square fluctuation is just

(**)«> (or 2(*2)o> if tne integral is taken only over positive values of co). This

quantity is also, by (121.5), the Fourier component of the correlation func-

tion. Conversely

(jc2)t0=
2^ \

<f>^eia>Tdt
- (12L7)

By regarding the quantity x(t) as a function of time we have implicitly

assumed that it behaves classically. The above formulae can, however, easily

be put in a form applicable to quantum variables also. To do this, we must

replace x by the quantum operator x(t), with Fourier component

*m = h \
*<<t)eitat dL (12L8)

— oo

The operators x(t) and x(t') relating to different instants do not in general

commute, and the correlation function must now be defined as

4>{t'-t) = $[x(t)x(t')+ x(t')x(t)], (121.9)
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the bar denoting averaging with respect to the exact probabilities given by
quantum mechanics.

-

' The quantity (x\ is defined by

K*«*»' +*«'*») = (x2)ad(co+o)'); (121.10)

the relations (121.5)-(121.7) are then unchanged.

Let us assume that the quantity x is such that, if it has a definite value
(considerably different from its mean fluctuation), a definite state of partial

equilibrium can be described by it. In other words, the relaxation time for
the establishment of partial equilibrium for a given value of x is assumed to

be much less than the relaxation time required to reach the equilibrium value
of x itself. This condition is satisfied by a wide class of quantities of physical
interest. We shall call the fluctuations of such quantities thermodynamic
fluctuations. In the rest of this section and in §§122-124 we shall consider
fluctuations of this type, and moreover shall assume the quantities x to be
classical, t

We shall also assume in the rest of this section that, as complete equilibrium
is approached, no other deviations from equilibrium arise in the system which
would require the use of further quantities to describe them. In other words,
at every instant the state of the body must be entirely defined by the value
of x; a more general case will be discussed in §124.

Let the quantity x(t) have at some instant t a value which is large compared
with the mean fluctuation. Then we can say that at subsequent instants the

body will tend to return to the equilibrium state, and accordingly the quantity
x will decrease. Under the assumptions made above, its rate of change x
will be at every instant entirely defined by the value of x at that instant:

x = x{x). If x is still small (compared with its range of possible values),

then x(x) can be expanded in powers of x, keeping only the linear term:

dx/dt=-Xx, (121.11)

where A is a positive constant.

Let us also define a quantity ^(r) as the mean value of x(t) at time t+t,
given that at the preceding instant / it had the value jc; this mean value is not
in general zero. The correlation function <t>(x) can obviously be written in

terms of the function ix(r) as

<P(r) = *fx(*), (121.12)

t It may again be mentioned that, according to the fundamental principles of statistical

physics, the result of the averaging is independent of whether it is done mechanically over
the exact wave function of the stationary state of the system or statistically by means of
the Gibbs distribution. The only difference is that in the former case the result is expressed
in terms of the energy of the body, and in the latter case as a function of its temperature.

t The final result for thermodynamic fluctuations of a quantum variable differs from
that for a classical variable only by slight changes in the form of the expressions, discussed
n §127 (see (127.22)).
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where the averaging is only over the probabilities of the various values of x

at the initial instant /.

For values of £x large compared with the mean fluctuation, it follows from

formula (121.11) that also

dk(T)/dr= -A|x(t), (121.13)

and we must further expect this relation to be true for arbitrary (not neces-

sarily large) f/r). Integrating (121.13) we find, since by definition |x(0) = x,

|x(t) = xe~ Xr
,

and finally, substituting in (121.12), we obtain a formula for the time correla-

tion function

:

0(r) = x*e~ x\

It must be remembered, however, that this formula as it stands is valid

only for r > 0, since in the foregoing derivation (equation (121.13)) it has

been assumed that the instant t+t is later than t. On the other hand, we

have identically

0(0 = x(t)x(t+t) = x(t-t)x(t) = #(-t),

since this transformation amounts to a simple renaming of the variable (t—r

instead of t) over which the averaging is performed. Thus <f>(r) is an even

function of r.

We can therefore write finally

4>{x) = x~2e~ x \*\, (121.14)

which is valid for both positive and negative r. This function has two different

derivatives at x — 0, the reason being that we have considered intervals of

time long compared with the time for establishment of partial equilibrium

(equilibrium with a given value of x). The consideration of short times, which

is not possible within the thermodynamic theory, would of course show that

d(f>/dt = for t = 0, as must be true for any even function of t.

An elementary integration leads to the following expression for the Fourier

components of the function <f>(t), as defined by (121.7):

(4 =
n{J+X2

)

^ = W(o>2 +A*), (121.15)

x2 being given by (112.4).

These results can also be written in another form which is often more

convenient for practical applications.

The relation x = —Xx for the quantity x itself (rather than its mean value

ix) is valid, as already mentioned, only when x is large compared with the

mean fluctuation of x. For arbitrary values of x we write

jc = -Ax+y, (121.16)
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thus defining a new quantity y{t). Although the magnitude of the oscillations

of y does not change with time, when x is large (in the sense already defined)

y is relatively small and may be neglected in equation (121.16).

Multiplying this equation by e
iwt and integrating over / from to T (with

integration by parts for the term xeitiJ% we obtain xa = yJQ.—ko). Using
now formulae (121.4) and (121.15), we have

Cy
2
)*, = h?ln. (121.17)

It is worth noting that this quantity is independent of the frequency.

The quantity (121.17) is also the Fourier component of the mean value

y(t)y(t+t) (just as (x2)^ is the Fourier component of the mean value

x(t)x(t+r)). A function whose Fourier components are independent of fre-

quency is proportional to the delta function, and it is easy to see that

y(t)y{t+x) = 2Ajc2<5(t). (121.18)

The vanishing of this expression when x ^ signifies that the values of

y(t) at different instants are entirely uncorrelated. In reality, of course, this

statement is an approximation and signifies only that the values of y(t) are

correlated over time intervals of the order of the time for partial equilibrium

to be established (equilibrium with a given value of x), which, as already

mentioned, is regarded as negligibly small in the theory given here. In this

connection it should be noted that all the formulae derived in this section for

the Fourier components of various quantities are valid only for frequencies

small compared with the reciprocal of the time for partial equilibrium to be

established.

§122. The symmetry of the kinetic coefficients

Let us consider a closed system, not in a state of statistical equilibrium;

let several thermodynamic quantities xi, x 2 , . .
.
, xn which describe the whole

system, or parts of it, all have non-equilibrium values (if they describe the

whole system, they must not be quantities which remain constant for a closed

system, such as energy or volume). As in §113, it will be convenient to suppose

that the equilibrium values have been subtracted from these quantities, so

that xi, X2, . . . themselves represent the degree of non-equilibrium of the

system.

The quantities Xi, . .
. , xn will vary with time. We shall suppose that these

quantities are such as to give a complete description of the approach to

equilibrium, and that no other deviations from complete equilibrium occur

during this process; cf. §121. Then the rate x
t
of variation of the quantity jc

4

in any non-equilibrium state is a function of the values of xi, . . . , xn in that
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state

:

xt
= Xi(xu ...,xn). (122.1)

Let us assume that the system is in a state fairly close to equilibrium, so that

the quantities x
{
can be regarded as small. Then, expanding the rates x

t
in

powers of xx , . . ., jcn , we need take only the first-order terms, i.e. write the

x
t
as linear sums of the form

n

Xi = — £ hkxk
ft=l

with constant coefficients Xik. There can be no zero-order terms in this expan-

sion, since in equilibrium (i.e. when *i = 0, x2 = 0, . . .) all the rates x
t

must also be zero. In what follows, as in §113, we shall omit the summation

signs; summation from 1 to n over all repeated suffixes will be implied. Thusf

Xi = -lihxh . (122.2)

We also define the derivatives

Xi = -dS/dXi (122.3)

of the entropy S of the system. In a state of equilibrium, the entropy is a

maximum, so that

Zi = 0, X2 = 0,..., Xn = 0. (122.4)

and for small xit
again taking only the first-order terms, we can write

Xi = Pihxh ,
(122.5)

the /5ift
being constant coefficients. These are the first derivatives of the X

i

i.e. the second derivatives of S; hence

ftft
= &i, (122.6)

i.e. the coefficients are symmetrical in the suffixes i and k; this is not true of

the coefficients A
ift

in (122.2).

If the x
{
are expressed in terms of the X

t
by (122.5) and substituted in

(122.2), the rates x
t
are thereby also expressed as linear combinations of the

X
t ; the resulting equations are of the form

Xi = -yikXh . (122.7)

The quantities yik are called kinetic coefficients. We shall now prove the

principle of the symmetry of the kinetic coefficients (first discovered by

t In applications, cases occur where the complete equilibrium which is being approached

depends on external parameters (such as volume or external field) which themselves vary

slowly with time; the equilibrium (mean) values of the quantities considered therefore vary

also. If this variation is sufficiently slow, we can again use the relations derived here, ex-

cept that the mean values x~
4
can not be regarded as always equal to zero. If they are denoted

by xl

(
°\ then (122.2), for example, must be replaced by

*
{
= -Art (*,-*,«»).

(122.2a)
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L. Onsager, 1931). This states that

?ik = y«. (122.8)

To prove this result, let us assume that the x
t
are not equal to their mean

values owing to a fluctuation of the system. We take the value of any one of

the x
{
at some instant t and that of another xh at time t+t, and average the

product Xi(t)xh(t+x) over time t (for a given positive value of r). The equa-

tions of motion of the particles of the body (in the absence of an external

magnetic field) are symmetrical under time reversal. It is therefore immaterial

whether in the averaging we take xk at the later time and x
t
at the earlier

time, or vice versa. The mean values of the products Xj(j)xh(t+x) and

x
i
(t+x)xk(t) must consequently be equal:

Xi(t)xk(t+t) = Xi(t+r)xk(t). (122.9)

We differentiate this equation with respect to r and then put r = 0. The

result is

x
{
xk = x{xk . (122.10)

To avoid misunderstanding, the following comment should be made regard-

ing the above derivation. By changing the variable t, over which the averaging

is carried out, into t—t, we have identically

Xi(t)xh(t+t) = Xi(t-r)xh(t),

which may be written

*«(*) = *»(-*), (122.11)

with the notation

<f>ik(x) = Xi(t+t)xk(t). (122.12)

It might seem at first sight that, by differentiating (122.11) with respect to x

and then putting r = 0, we could show that
ift
(O) = 0. In reality, however,

as already mentioned in §121, in the approximation considered here the

functions
<t>ik{x) (like <f)(x) in §121) have two different derivatives at r =

according as x — + or —

.

We now substitute in (122.10) the formula (122.7) for jc
t

: x
iykiXl

=

7iixi
xh- From (H3.7), X& = du , and so ykldu = yki

= yudik = yik . This

proves (122.8).

The following two comments should, however, be made regarding this

relation. The proof depends on the symmetry of the equations of motion with

respect to time, and the formulation of this symmetry is somewhat altered

for fluctuations in a uniformly rotating body and for bodies in an external

magnetic field: in these cases the symmetry under time reversal holds only

if the sign of the angular velocity of rotation Q or of the magnetic field H is

simultaneously changed. Thus in these cases the kinetic coefficients depend on
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Q or H as parameter, and we have the relations

7ik(&) = 7hi(-&)>
(122 13)

7i/t(H) = yw(-H).

Moreover, it has been tacitly assumed in the derivation that the quantities

x
{
are such as to remain unchanged under time reversal. But if these quanti-

ties are proportional to the velocities of some macroscopic motions, they will

themselves change sign under time reversal. It is easy to see that, if any two

quantities x
t
and xk both change sign, the relation (122.10) will still hold,

and therefore yik = yki
. But if one of x

t
, xk changes sign while the other

does not, we have x
4
*

fe
= -*

4
jc

fc
, and for the corresponding kinetic coeffi-

cients

ylk = -7m- (122.14)

From (122.7) and (122.8) it follows that the rates x
x
can be written as the

derivatives,

Xi = -df/dXu (122.15)

of some "generating function" /, which is a quadratic form in the quantities

X
i
with coefficients $yik :

f=^YiKXiXk . (122.16)

This is an important function, since it determines the time derivative of

the entropy: S = (dS/dx^i = -XiXi = Xfif/dX^, and since/ is a quadratic

function of the X
t
Euler's theorem gives

S = If (122.17)

As the equilibrium state is approached, the entropy S must increase towards a

maximum. The quadratic form/must therefore be positive-definite, and this

imposes certain conditions on the coefficients yik .

In an exactly similar way to the derivation of (122.8) we can show that, if

the time derivatives of the X
{
are expressed as linear functions of the xit

*i = -?«**, (122.18)

then the coefficients Cih are symmetrical:

c« - c«. (122 - 19>

We can therefore write the X
{
as derivatives

Xi = -df/dxi (122.20)

of a quadratic function

f=XihxiXk . (122.21)

Using formula (122.5) we find, since j8ift
= /5fti ,

dS = -Xk dxh
= -phiXi dxk = -Xi d(Pikxk) = -xt

dXit

and hence

-dS/dXi = xu (122.22)
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where the entropy is now assumed to be expressed as a function of the X
{

.

The derivative $ may therefore also be written

$ = (ds/dxjXi = -
XiXi = Xidf/dxi = if,

with /given by (122.21). Comparison with (122.17) shows that the two func-

tions (122.16) and (122.21) are the same quantity expressed in terms of differ-

ent variables.

For a system consisting of a body in an external medium we can transform

(122.17) by using the fact that the change in entropy of a closed system in a

deviation from equilibrium is —RmiJT , where i?min is the minimum work

needed to bring the system from the equilibrium state into the one considered

(see (20.8)).
f Putting also Rmin = AE-ToAS+P*AV (where E, S and V

relate to the body, and T , P are the temperature and pressure of the medium),

we obtain

£-T $+P V = -2/7V (122.23)

In particular, if the deviation from equilibrium occurs with the temperature

and pressure of the body constant and equal to To and P
,

& = -2fT, (122.24)

and at constant temperature and volume

F= -2fT. (122.25)

§123. The dissipative function

The macroscopic motion of bodies surrounded by an external medium is in

general accompanied by irreversible frictional processes, which ultimately

bring the motion to a stop. The kinetic energy of the bodies is thereby con-

verted into heat and is said to be dissipated.

A purely mechanical treatment of such a motion is clearly impossible:

since the energy of macroscopic motion is converted into the energy of ther-

mal motion of the molecules of the body and the medium, such a treatment

would require the setting up of the equations of motion for all these molecules.

The problem of setting up equations of motion in the medium which contain

only the "macroscopic" co-ordinates of the bodies is therefore a problem of

statistical physics.

This problem, however, cannot be solved in a general form. Since the

internal motion of the atoms in a body depends not only on the motion of the

body at a given instant but also on the previous history of the motion, the

tOwing to this relation between the value of the entropy and Rmin , the X, can also be
defined as

X
t
= (l/r )8JRmin/6xi , (122.3a)

which is sometimes more convenient than (122.3); cf. (22.7).
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equations of motion will in general contain not only the "macroscopic" co-

ordinates Qi, Qz, .

.

.
, Qs

of the bodies and their first and second time deriva-

tives but also all the higher-order derivatives (more precisely, some integral

operator of the co-ordinates). The Lagrangian for the macroscopic motion

of the system does not then exist, of course, and the equations of motion

will be entirely different in different cases.

The equations of motion can be derived in a general form if it may be

assumed that the state of the system at a given instant is completely deter-

mined by the values of the co-ordinates Q{
and velocities Q{, and that the

higher-order derivatives may be neglected; a more precise criterion of small-

ness has to be established in each particular case. We shall further suppose

that the velocities Q{
are themselves so small that their higher powers may be

neglected, and finally that the motion in question consists of small oscillations

about certain equilibrium positions. The latter is the case usually met with

in this connection. We shall assume the co-ordinates Qt
to be chosen so that

Qi — in the equilibrium position. Then the kinetic energy K(^
{) of the sys-

tem will be a quadratic function of the velocities Q,{
and independent of the

co-ordinates Q{
themselves; the potential energy U(Q^) due to the external

forces will be a quadratic function of the co-ordinates Q{
.

We define the generalised momenta P
t
in the usual way

:

Pi = dKiQd/dQi. (123.1)

These equations define the momenta as linear combinations of the velocities

;

using them to express the velocities in terms of the momenta and substituting

in the kinetic energy, we obtain the latter as a quadratic function of the

momenta, with

& = dK(Pi)/dPi. (123.2)

If the dissipative processes are entirely neglected, the equations of motion

will be as in ordinary mechanics, according to which the time derivatives

of the momenta are equal to the corresponding generalised forces :

Pi = -dU/dQi. (123.3)

First of all, let us note that equations (123.2), (123.3) are in formal agree-

ment with the principle of the symmetry of the kinetic coefficients derived

in §122, if the quantities jti, x%, . . ., x2s
used there are taken as the co-ordi-

nates Q{
and momenta P

{
. For the minimum work needed to bring the bodies

from a state of rest in their equilibrium positions to the positions Q{
with

momenta P
t

is Rmin = K{P^+U{Q^. The quantities Xly X2 , ..., X28
will

therefore be the derivatives

XQt
= (l/T)dRmlJdQi = (l/T^U/dQi,

XPt = (l/T)dRmiJdPi = (\fT)dK/dPi
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(see the last footnote to §122), and equations (123.2), (123.3) will correspond

to the relations (122.7) with yQiP( = -T = -y
PiQi , in accordance with

the rule (122.14); this is a case where one quantity (Qt) remains invariant

under time reversal but the other (P
f)
changes sign.

In accordance with the general relations (122.7), we can now write the

equations of motion allowing for dissipative processes, by adding to the

right-hand sides of equations (123.2), (123.3) certain linear combinations of

the quantities X
Q{ , XPi , such that the required symmetry of the kinetic

coefficients is maintained. It is easy to see, however, that equations (123.2)

must be left unchanged, since they are simply a consequence of the definition

(123.1) of the momenta and do not depend on the presence or absence of

dissipative processes. This shows that the terms added to equations (123.3)

can only be linear combinations of the quantities XP{ (i.e. of the derivatives

dK/dPj), since otherwise the symmetry of the kinetic coefficients would be
violated.

Thus we have a set of equations of the form

• _ _dU__ y dK

where the constant coefficients yik are related by

Vik = Vki- (123.4)

Putting dK/dPk = Qh , we have finally

>i= -57T-E rikQh- 023.5)

These are the required equations of motion. We see that the presence of

dissipative processes leads, in this approximation, to the appearance of

frictional forces which are linear functions of the velocities. Owing to the

relations (123.4) these forces can be written as the derivatives, with respect

to the corresponding velocities, of the quadratic function

f=$ZrikQiQh, (123.6)
i,k

which is called the dissipative function. Then

~ SU 8/

Using the Lagrangian L = K— U, we can write these equations of motion as

d^6X\ dL _ 8/

dt

which differs from the usual form of Lagrange's equations by the presence

of the derivative of the dissipative function on the right.

/8L\ dL df(-^ = --^-, (123.8)
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1

The existence of friction causes a decrease in the total mechanical energy

K+ U of the moving bodies. In accordance with the general results of §122,

the rate of decrease is determined by the dissipative function. This will be

proved afresh here, since there is some difference in the notation used in the

present section. We have

:*+0>-£(£* +£ft)-? &M23'
d_

dt

or, substituting (123.7) and using the fact that the dissipative function is

quadratic,

<(*+£/)= -Eft |-= -2/, C23.9)

as it should be.

Finally, we may mention that, when there is an external magnetic field,

the equations of motion again take the form (123.5), but (123.4) is replaced by

y«(H) = yM(-H).

As a result, there is no dissipative function whose derivatives determine the

friction forces. The equations of motion therefore cannot be written in the

form (123.7).

§124. Time correlations of the fluctuations of more than one variable

The results obtained in §121 for the time correlation function of one fluc-

tuating quantity can be generalised to fluctuations in which several thermo-

dynamic quantities xi, x2, . . • , xn simultaneously deviate from their equi-

librium values.

By analogy with the definition (121.1), we define the correlation functions

<t>ik(?) = x£t+i)xh{t). (124.1)

These satisfy identically the relations

M*) = **(-*) (124 -2)

(see (122.11)).

Instead of (121.7) we now have

(x
i
x

ft) co = i f &***•* d*. (124.3)

— oo

where the quantities (x^^ are defined by

Xia>Xka)' = (XiXf^aydico+co'). (124.4)

Let us consider the mean value x^X^t+t). Substituting Xk
= /9ftlxt

, we

obtain

Xi(t)Xh(t+ t) = jffw K(T).
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On the other hand, using the mean values 3k{x) of the Xk and gk(r) of the

xk at t+x for given values of all the xu x2 , ... at time t, we can write (cf.

(121.12))

Xi(t)Xk(t+t) = x{
3k(x).

Differentiating this equation with respect to x, substituting for the deriva-

tives dSJdx the values —Ck^i with the same coefficients as in (122.18)

and bearing in mind that x^^x) =
<t>u(x), we obtain the equations

fa d<f>H /dx = -Cki4>n (t > 0), (124.5)

which determine the
<f>ik as functions of r; it must be remembered that the

equations in this form are valid only for x > (cf. §121).

To calculate the Fourier components of the functions <j)ik, we multiply

the equation (124.5) by e
t<or and integrate over x from to «.. Integrating by

parts and using the fact that
<f>ih{ <») = 0, we find

eo eo

-Mli(0)~iCofa
j
faW* dx = -£«

|

faiix)?™ dt.

But from (113.8)

and hence

Thus we have

&i(0) = x
{xi = p-^,

oo

tthi-ioPhd f <f>u(r)e^dx = dhi .

o

oo

{
<f>uei™dx = (C-ia>p)-i,i,

where (£—«»#) \{
are the components of the matrix inverse to (£— /ot>/S)H .

Replacing x by — x and co by -co, and using the relation (124.2), we obtain

o

[ <f>li(x)e
icoT

dT: = (t+io>Pr1
u.

— oo

Finally, addition of these two equations gives

<t>n(x)ei°» dx = (C-fo0r1«+(C+ tofl-
1
,,, (124.6)

I
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which determines the required Fourier components and thus generalises for-

mula (121.1 5)
f

.

The matrix (3H is always symmetric. In the absence of a magnetic field the

Ch are also symmetric, and therefore so is the matrix ^i/co/^ and hence

also its inverse. t

As at the end of§121, we may write these results in a different form by using

new variables Y
{
defined by

Xi =-tikxk+Yi : (124.7)

these quantities may be neglected when the xk exceed their mean fluctuations.

Exactly as in §121, a simple calculation leads to the formula

&¥£. = (l/2*XCtt +C«). (124.8)

These quantities are again independent of co.

For the quantities y{
defined by

*» = -rthXh+yu (124.9)

there is the corresponding formula

Gw*). = (i/2KXr«+yjH). (124.10)

This formula is obvious without further calculation if we note that there

is a reciprocal relation between the x
i
and the X

{
: the X

{
are the derivatives

of the entropy with respect to the x
t
and vice versa.

We may also note the formula

>-i(0^+t) = (Yik+VkdKi), (124.11)

which corresponds to (124.10) in the same way as (121.18) corresponds to

(121.17).

For practical applications, formulae (124.8) and (124.10) have the advan-

tage of containing the matrix elements £ift
and yih themselves, not the matrix

elements of the inverse matrix.

As an example of the use of the above formulae, let us consider fluctuations

of a one-dimensional oscillator, i.e. a body which is at rest in the equili-

brium position (Q = 0) but capable of executing small oscillations in some

t If there is only one quantity x, then we have

27r(xz) = -z—r-5+-

By the definition of A, /?, f we have in this case X = fix, X = —Cx,x— —Kx. Thus £ = A/?

and we return to formula (121.15).

% If one of the xt (xh say) changes sign under time reversal, the corresponding matrix

elements (124.6) must be antisymmetric. This is in fact so, since in that case C« = — C (;

(cf. (122.14)) and the coefficients /?« = 0. The latter result follows because the pit are

coefficients of the products x{xt in the quadratic form which gives the change in entropy in

a deviation from equilibrium. Since the entropy is invariant under time reversal while the

product x{x, changes sign, the entropy cannot contain any such term, i.e. f} (,
= 0.
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macroscopic co-ordinate Q. Because of fluctuations, the co-ordinate Q will

in fact undergo deviations from the value Q = 0. The mean square of this

deviation is determined directly from the coefficient in the quasi-elastic force

which acts on the body during a deviation.

We write the potential energy of the oscillator in the form U — %m(o 2Q2
,

where m is the "mass" (i.e. the coefficient of proportionality between the

generalised momentum P and the velocity () : P = mQ), and a>o the natural

frequency of the oscillator (in the absence of friction). Then the mean square

fluctuation is (cf. §114, Problem 7) Q2 = T/m(o 2
.

It is of more interest, however, to calculate the "Fourier components"

of the fluctuations in the co-ordinate. We shall do this for the general case

where the oscillations are accompanied by friction.

The equations of motion of an oscillator with friction are

Q = P/m, (124.12)

P = -moo *Q-yPlm, (12413)

where — yP/m = — yd is the "frictional force". As shown in §123, if Q and

P are taken as xi and X2, the corresponding X\ and X2 are ma>o2QIT and

P/mT. Equations (124.12) and (124.13) then represent the relations x
t
=

-Vihxk> so that

yn = 0, 712 = —yi\= -T, 722 = yT.

In order to apply these equations to the fluctuations, we write (124.13) as

P - -mco 2Q-yP/m+y; (124.14)

equation (124.12), which is the definition of the momentum, must be left

unchanged. According to (124.10) we have immediately (y
2
)m = 722M = yT/71.

Finally, in order to derive the required (Q
2
)m , we substitute P = m£) in

(124.14), obtainingf

mQ+yQ+ mco 2Q = y. (124.15)

Multiplying by e
x<ot and integrating over time, we find

(— mcot— icoy+mcofiQa, = ;;„,

and hence finally

(Q2h = yT/7t[m2((o2-co 2
)
2 +co2

y
2
]. (124.16)

§125. The generalised susceptibility

It is not possible to derive a general formula for the spectral distribution

of non-thermodynamic fluctuations analogous to formula (121.15) for the

thermodynamic fluctuations, but in many cases it is possible to relate the

t If (124.15) is regarded as the "equation of motion" of a fluctuating oscillator, the

quantity y is sometimes called the random force acting on the oscillator.
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properties of non-thermodynamic fluctuations to quantities describing the

behaviour of the body under certain external interactions. These may be

fluctuations of either classical or quantum quantities.

Physical quantities of this type have the property that for each of them

there exists an external interaction described by the presence, in the Hamil-

tonian of the body, of a perturbing operator of the type

P=-xf{t), (125.1)

where x is the quantum operator of the physical quantity concerned, and the

"perturbing force" /is a given function of time.*

The quantum mean value x is not zero when such a perturbation is present

(whereas x = in the equilibrium state in the absence of the perturbation),

and it can be written in the form d/, where d is a linear integral operator

whose effect on the function/(f) is given by a formula of the type

oo

x(t) = &/=[ K(x)f{t-x) dr, (125.2)

K(r) being a function of time which depends on the properties of the body.

The value of x at time t can, of course, depend only on the values of the

"force" /at previous (not subsequent) times; the expression (125.2) satisfies

this requirement.

Any perturbation depending on time can be reduced by means of a Fourier

expansion to a set of monochromatic components with a time dependence

e~ iwt
. For such a perturbation, the relation between x and /is

x = a(co)/ (125.3)

where the function a(co) is given by

a(a)) = f K(t)ei(or dr. (125.4)

o

If this function is specified, the behaviour of the body under the perturbation

in question is completely determined. We shall call a the generalised suscept-

ibility. It plays a fundamental part in the theory described below, since, as

we shall see, the fluctuations of the quantity x can be expressed in terms

of it.*

t For example, / may be an external electric field and x the electric dipole moment
acquired by the body in that field.

% In the example given in the last footnote, a is the electric polarisability of the body.

The quantity a thus defined is more convenient than the frequently used quantity Z(co)

'— - l//eoa, called the generalised impedance, which is the coefficient in the relation / = Zx.
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The function a(co) is in general complex. Let its real and imaginary parts

be denoted by a' and a"

:

a = a'+ /a". (125.5)

The definition (125.4) shows immediately that

a(-ft>) = a*(co). (125.6)

Separating the real and imaginary parts, we find

a'(-ct)) = a'(co), a"(-w) = -a'», (125.7)

i.e. a'(fc>) is an even function of the frequency, and a" an odd function.

When co = the function cc"(co) changes sign, passing through zero (or in

some cases through infinity).

It should be emphasised that the property (125.6) simply expresses the

fact that the operator relation x = a/ must lead to real values of x for every

real/. If the function/(f) is given by the real expression

/ = ¥foe- icot+fo*e^), (125.8)

then by applying the operator d to each of the two terms we obtain

x = U*(o>)foe- icot +oL(-co)f *e icot
); (125.9)

the condition for this expression to be real is just (125.6).

As co — oo, the function a(co) tends to a real finite limit a^. For definiteness

we shall suppose below that this limit is zero; a non-zero aM requires only

some obvious slight changes in some of the formulae.

The change in state of the body as a result of the "force" /is accompanied

by absorption (dissipation) of energy; the source of this energy is the external

interaction, and after absorption in the body it is converted into heat. This

dissipation also can be expressed in terms of the quantity a. To do so, we use

the equation dE[dt = dHjdt, which states that the time derivative of the

mean energy of the body is equal to the mean value of the partial derivative

of the Hamiltonian of the body with respect to time (see §11). Since only the

perturbation P in the Hamiltonian depends explicitly on the time, we have

dE/dt= -xdf/dt. (125.10)

This relation is of importance in applications of the theory under discussion.

If we know the expression for the change in energy in a particular process,

a comparison with (125.10) will show which quantity is to be interpreted as

the "force" /with respect to a given variable x.

The mean energy dissipation Q per unit time can be derived from (125.10)

by substituting x from (125.9) and averaging over the period of the external

interaction. The terms containing e
±2ltot vanish, and we obtain

Q = i/co(a*-a)l/
|

2 = ift>a"|/o|
2

. (125.11)
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From this we see that the imaginary part of the susceptibility determines the

dissipation of energy. Since any actual process is always accompanied by

some dissipation (Q > 0), we reach the important conclusion that, for all

positive values of the variable co, the function a" is positive and not zero.

It is possible to derive some very general relations concerning the function

oc(co) by using the methods of the theory of functions of a complex variable.

We regard co as a complex variable (co = co'-hico") and consider the properties

of the function a(co) in the upper half of the co-plane. From the definition

(125.4) and the fact that ^(r) is finite for all positive r, it follows that a(co)

is a one-valued regular function everywhere in the upper half-plane. For,

when co" > 0, the integrand in (125.4) includes the exponentially decreasing

factor e~
Ta" and, since the function K(%) is finite throughout the range of

integration, the integral converges. The function a(co) has no singularity on

the real axis (co" = 0), except possibly at the origin.
1-

It is useful to notice

that the conclusion that a(co) is regular in the upper half-plane is, physically,

a consequence of the causality principle. Owing to this principle, the inte-

gration in (125.2) is taken only over times previous to t, and the range of inte-

gration in (125.4) therefore extends from to <» rather than from — <»to °°.

It is evident also from the definition (125.4) that

a(_ct)*) = a*(co). (125.12)

This generalises the relation (125.6) for real co. In particular, for purely

imaginary co we have <x.(jco") = <x.*(ico"), i.e. the function a(co) is real on the

imaginary axis.

We shall prove the following theorem. The function a(co) does not take real

values at any finite point in the upper half-plane except on the imaginary

axis, where it decreases monotonically from a positive value ao > at

co = j'0 to zero at co = i <» . Hence, in particular, it will follow that the func-

tion a(co) has no zeros in the upper half-plane.

To prove the theorem* we use a theorem from the theory of functions of a

complex variable, according to which the integral

' da(co) dco

2raJ dco a(co)—a
(125.13)

taken round some closed contour C, is equal to the difference between the

number of zeros and the number of poles of the function a(co) — a in the region

bounded by the contour. Let a be a real number and let C be taken as a

contour consisting of the real axis and an infinite semicircle in the upper

t In the lower half-plane, the definition (125.4) is invalid, since the integral diverges.

Hence the function oc(co) can be defined in the lower half-plane only as the analytical con-

tinuation of the expression (125.4) from the upper half-plane, and in general has singulari-

ties in this region.

t The proof given here is due to N. N. Meiman.
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half-plane (Fig 54) Let us first suppose that <xo is finite. Since in the upper

half-plane the function a(ct>) has no pole, the same is true of a(co) — a, and the

integral in question gives simply the number of zeros of the difference a— a,

i.e. the number of points at which a(co) takes the real value a.

To calculate the integral, we write it as

J_ f
da

2tt/J a— a'

Fig. 54

the integration being round a contour C" in the plane of the complex variable

a which is the map of the contour C in the co-plane. The whole infinite semi-

circle is mapped on to the point a = 0, and the origin (co = 0) is mapped on
to another real point a . The right and left halves of the real axis of co are

mapped in the a-plane on to some very complicated (generally self-intersect-

ing) curves which are entirely in the upper and lower half-planes respectively.

It is important to note that these curves nowhere meet the real axis (except

at a = and a = ao), since a does not take real values for any real finite co

except co = 0. Because of this property of the contour C", the total change of

the argument of the complex number a — a on passing round C" is In (if a

lies between and ao as shown in Fig. 54) or zero (if a lies outside that range),

whatever the number of self-intersections of the contour. Hence it follows

that the expression (125.13) is equal to 1 if < a < a and zero for any other

value of a.

Thus we conclude that the function a(co) takes, in the upper half-plane of

co, each real value of a in this range once only, and values outside this range

not at all. Hence we can deduce first of all that on the imaginary axis, where

the function a(co) is real, it cannot have either a maximum or a minimum,

since otherwise it would take some values at least twice. Consequently, a(co)

varies monotonically on the imaginary axis, taking on that axis, and nowhere

else, all real values from ao to zero once only.

If ao = °° (i.e. a(co) has a pole at the point co = 0), the above proof is

affected only in that on passing along the real axis (in the co-plane) it is



§125 The Generalised Susceptibility 389

necessary to avoid the origin by means of an infinitesimal semicircle above

it. The change in the contour C" in Fig. 54 can be regarded as the result of

moving a to infinity. The function a(eo) then decreases monotonically from

oo to on the imaginary axis.

Let us now derive a formula relating the real and imaginary parts of the

function a(co). To do so, we choose some real positive value co of co and

integrate the expression a/(co— co ) round the contour shown in Fig. 55. This

contour includes the whole of the real axis, indented upwards at the point

co = co > (and also at the point co — if the latter is a pole of the function

a(co)), and is completed by an infinite semicircle. At infinity, a -*- 0, and the

function <x./(co— co ) therefore tends to zero more rapidly than 1/co.

integral

a(eo)

The

CO— COq
dco

consequently converges ; and since a(co) is regular in the upper half-plane, and

the point co = coq has been excluded from the region of integration, the func-

tion a/(co— coo) is analytic everywhere inside the contour C, and the integral

is therefore zero.

The integral along the infinite semicircle is also zero. The point coq is

avoided by means of an infinitesimal semicircle whose radius q tends to zero.

The direction of integration is clockwise, and the contribution to the integral

is — »ra(ft>o). If ao is finite, the indentation at the origin is unnecessary, and

the integration along the whole real axis therefore gives

lim
e-*o

(o — Q oo

f
_5_d»+ r

j
co -°>«

j
-oo a> +e

a

CO— COq
dco — i7ioc(coo)= 0.

The first term is the principal value of the integral from — ~ to ». Indicating

this in the usual way, we have

/7ta(ft>o)

oo

"J
a

CO— COq
dco. (125.14)
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Here the variable of integration co takes only real values. We replace it by £,

call the given real value co instead of co , and write the function <x.(co) of the

real variable co in the form a = a'+ /a". Taking the real and imaginary parts

of (125.14), we obtain the following two formulae:

n
J

£-<
a'(o>) =£:P

| F"^ d^ (125.15)

a»= --P f f^d£ (125.16)
•co

first derived by H. A. Kramers and R. de L. Kronig (1927). It should be

emphasised that the only essential property of the function a(co) used in the

proof is that it is regular in the upper half-plane.f Hence we can say that

Kramers and Kronig's formulae, like this property of a(co), are a direct

consequence of the causality principle.

Using the fact that <x"(£) is an odd function, we can rewrite (125.15) as

n

.-«)
dtti,r.Ta ttH3

or

£—co n
J

tj+co

o

«'(»)-|'JS«- (i25i7>

If the function a(co) has a pole at the point co = 0, near which a = iA/co,

the semicircle avoiding this pole gives a further real term —A/coo, which must

be added to the left-hand side of equation (125.14). Thus formula (125.16)

becomes

-,' j?a"(a>) = --P I f^ df + -, (125.18)-
' ^— CO CO

but (125.15) and (125.17) remain unchanged.

We may also derive a formula which expresses the values of cc(co) on the

positive imaginary axis in terms of the values of <x"(co) on the real axis. To do

so, we consider the integral

cox(co)

\ co2+co 2
dco

t The property a -* as <o -* «> is not essential: if the limit a_ were other than zero, we
should simply take a— a„ in place of a, with corresponding obvious changes in formulae

(125.15), (125.16).
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taken along a contour consisting of the real axis and an infinite semicircle

in the upper half-plane (co being a real number). This integral can be

expressed in terms of the residue of the integrand at the pole co = ia> . The
integral along the infinite semicircle is zero, and so we have

f

cocc(co) . . ,.
dco = mx{i(Do).

ft)
2+ ft>0

2

On the left-hand side the real part of the integral is zero, since the integrand

is an odd function. Replacing co by £ and coq by co, we have finally

oo

Integration of this with respect to co gives

j
a(to) da) =

J

a"(o>) dco. (125.20)

o o

§126. Non-thermodynamic fluctuations of a single variable

Let a body to which the quantity x refers be in a particular (nth) stationary

state. The mean value (121.10) is calculated as the corresponding diagonal

matrix element

-2\X jXa,' T" Xao'Xwfnn ~2 2-i Lv-^co/nmv-^to'/mn " \^ca')nm\^o>)mnU (IZO.1)
m

where the summation is over the whole spectrum of energy levels ; since the

operator jc„ is complex, the two terms in the brackets are not equal.

The time dependence of the operator x means that its matrix elements must

be calculated by means of the time-dependent wave functions. We therefore

have

Mnm = i I
xnme*<°nm+ <°)t dt = xnm d(conm+ co), (126.2)s| x

where xnm is the ordinary time-independent matrix element of the operator

x, expressed in terms of the co-ordinates of the particles of the body, and

conm = (En—Em)/fi is the frequency of the transition between the states n

and m. Thus

K*o.*«>' + *»'*«) nn = i Z \

Xnm
\

2
[<5(a>nm+ G>) d((Omn +Q)')+

m

+ d(conm +co') d(comri +co)],



392 Fluctuations §126

where we have used the fact that xnm = xmn*, since x is real. The products of

delta functions in the brackets can clearly be written as

3(fl)Bm +fi)) d(co+a>')+ d(comn +co) <3(co +<»')•

A comparison with (121.10) then gives

(*
2
)» = i £ |^m |

2 [a(w+wnm)+ <$(<*>+ comn)]. (126.3)
m

The following comment may be made concerning the way in which this

expression is written. Although the energy levels of a macroscopic body are,

strictly speaking, discrete, they are so close together that in practice they

form a continuous spectrum. Formula (126.3) may be written without the

delta functions if it is averaged over small frequency intervals (which neverthe-

less contain many levels). If r{E) is the number of energy levels less than E,

then

M. = *M*[£;+£?]. d26.4)

where Em = En +fico, Em' = En -fao.
Let us now assume that the body is subject to a periodic perturbation (with

frequency co>), described by the operator

V = -fx = -K/oe- ia,f+/oV<°0*. (126.5)

Under the effect of the perturbation the system makes transitions, and the

probability (per unit time) of the transition n -> m is given by*

I f 12

*W =
2fir~ I

xmn \

2 {K(o+0)mn)+ d(co+conm)}. (126.6)

The two terms in this formula correspond to those in (126.5). In each transi-

tion the system absorbs or emits a quantum h(omn . The sum

Q = £ WnrrfiC0mn
m

is the mean energy absorbed by the body per unit time; this energy is supplied

by the external perturbation, and after absorption in the body it is dissipated

there. Substitution of (126.6) gives

Q = S* I/O i

2 Z I

Xnm \

2 {&(<»>+0>mn)+&(C0+ <0nm)}<*>mn

or, since the delta functions are zero except when their argument is zero,

Q = ^H/o|2 I \xnm n^+conm)-d(co-hcomn)}. (126.7)
*" m

t See Quantum Mechanics, §42.
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Comparison of (126.7) and (125.11) gives

«"(») = J S \*nm \Hd(a>+a>nm)-d{co+comn)}. (126.8)

The quantities (x2)a and a" thus calculated are related in a simple manner,

but the relation appears only when these quantities are expressed in terms of

the temperature of the body. To do this, we average by means of the Gibbs

distribution (cf. the second footnote to §121). For (x\ we have

(X2)* = i £ Qn \xnm |

2
{&(<»+ (Onm)+ d(co+ COmn) },

n, m

where for brevity we have put Qn = e
(F-En)lT^ ^ denoting the energy levels

of the body and F its free energy. Since the summation is now over both

suffixes m and n, these can be interchanged. If this is done in the second term,

we obtain

(*2)«, = i Z (Qn+ Qm) \xnm
|

2
&(<0+ <»nm)

m, n

= 1 Z ffnO +«**-'
T
) | *nm |

2
<5(o) + 0>nm)

m, n

or, because of the delta function in the summand,

(*
2
)„ = Hl+e-*"' 1

) I 6» |*nm|
2

<5(et>+ 0>nTn).
m, n

In an exactly similar manner we obtain

a" = ~ (1 -«-*•/*) £ g n |xBm |

2 5(co+ct)nm).
*» m, n

A comparison of these two expressions gives

, „. /ia" , /to) hen" f. ,
1 1 .,.,„,

(*% =
-5J-

coth_ -— ji+^s^TY] • (126.9)

The mean square of the fluctuating quantity itself is given by the integral

*-ij.,(co) coth^ dco. (126.10)

o

These important formulae (derived by H. B. Callen and T. A. Welton,

1951) relate the fluctuations of physical quantities to the dissipative proper-

ties of the system when it is subject to an external interaction. It should be

noted that the factor in the braces in (126.9) is formally the mean energy

(in units of toco) of an oscillator of frequency co at temperature T; the term

i corresponds to the zero-point oscillations.

The results obtained above can be written in a different form by regarding

the spontaneous fluctuations of the quantity x purely formally as due to the

action of some fictitious "random forces" /. It is convenient to write the

formulae in terms of the "Fourier components" x„ andfa as if x were an
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ordinary (not an operator) quantity. The relation between them is

xa = a(w)/„, (126.11)

and the mean square fluctuations can then be written in the form

*«,*«,' = a(fl>)a(G/)/«/«»' = (x2
)wd(co + co') = \<x\

2
(f

2
)w d(co+co').

Hence we have from (126.9) for the spectral density of the mean square ran-

dom force

, ,.„. ha." , hoi
(/)cu=

2^ra7
COth

2r'
(126J2)

This treatment of the fluctuations may offer certain advantages in particular

applications of the theory.

At temperatures T^>hco we have coth (hco/2T) % 2T/fico, and formula
(126.9) becomes

(x2). = (7><o)a"(G>). (126.13)

The constant h no longer appears, in accordance with the fact that under
these conditions the fluctuations are classical.

If the inequality T» hco is valid for all frequencies of importance (those

for which <x"(co) is significantly different from zero), then we can take the

classical limit in the integral formula (126.10) also:

a _ 2r f «»(„)^_2TC
~ n

J
CO

But from (125.17) this integral can be expressed in terms of the static value
<x'(0) = a(0), and hence

x2 = Ta(0).

But a(0) = l//2r (see formula (127.20) below), and we return to the known
result (112.4). This is not surprising, since this formula depends only on the

fact that x is classical, not on the fluctuations' being thermodynamic.

PROBLEM
Derive formula (125.17) by a direct quantum-mechanical calculation of the mean value

of x in the perturbed system.

Solution. Let ¥y°> be the wave functions of the unperturbed system. Following the
general methodt, we seek the wave functions of the perturbed system, in the first approxi-
mation, in the form

\p _ uz (o). y a m (o)

m

where the coefficients amn satisfy the equations

t See Quantum Mechanics, §40.
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Hence

2ft "* \oimn -o) comn +oj /

where we assume that
|
to

| is not equal to any of the frequencies comn . Using the resulting
function Wn , we calculate the mean value of x as the corresponding diagonal matrix ele-

ment of the operator x; in the same approximation, we have

x = f ¥n*xWn d? = £ iamnxnJm^ +flm^ycW)

— _ V f
XmnXnm

,

XmnXnm ] • f -iwt f +Jmt^

Comparing this expression with the definition (125.3), we find

m w
(iiii

the imaginary part of a is absent, of course, since we have assumed that | co | * ©mn . If we
substitute (1) and (126.8) in (125.17), it is easy to see that the latter is in fact satisfied identi-

cally, noting that in the integration over positive I only one of the delta functions in a"(£)
can be non-zero.

§127. Non-thermodynamic fluctuations of more than one variable

The results given above can easily be generalised to the case where several

fluctuating quantities x
t
are considered simultaneously. The derivation will

be given without repeating in detail calculations which are exactly analogous

to those in §126.

Let x
{
and xk be any two of the physical.quantities under consideration.

We define the quantum-mechanical mean values of the symmetrised operator

products

:

\{xi(0xk<0 > + xkw>xio)) = (XiXk)w d(co+co'), (127.1)

a generalisation of (121.10). A calculation similar to the derivation of (126.3)

gives

(*<**)«» = iZ {(*t)nm(*ft)mn 0(»+ G>nm)+
m

+ (Xh)nm(Xi)mn K™ + <Omn)}- (127.2)

The perturbation acting on the system may be written

? = -Mi = -M/oie-^+ZoiV10')^. (127.3)

The amount of energy absorbed by the system per unit time is calculated

in the same way as (126.7):

Q =
2ft

°° Y,foifok*[(Xi)mn(Xk)nrn 0(«>+«>nm)-(*i)nm(*ft)m>i^+ «mn)].

(127.4)
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The definition (125.9) is generalised as follows:

* = HPto/ofi-™****/****) (127.5)

or

Xi = ««/*. (127.6)

if all quantities are expressed in complex form (~ e~ lwt
). The change in

energy is given in terms of the external perturbation by

E = -fCx~. (127.7)

This formula, like (125.10), is generally used in specific applications of the

theory in order to establish the actual correspondence between the quantities

XiUndfi.

Substituting (127.5) in (127.7) and averaging also over the period of the

perturbation, we have instead of (125.11) the following expression for the

energy dissipation:

Q = i faKofc* -afti)/oi/oft
*. (127.8)

A comparison with (127.4) gives

*ik*-<*ki = —t-£ [(Xi)mn(.xh)nm d(co+ conm)-
n m

-(*t)ntn(*ft)mn ^fO+ €Omn)]. (127.9)

Averaging this expression and (127.2) over the Gibbs distribution as in

§126, we find the following generalisation of (126.9):

(XiXk)w = ^ (ccki
* - aik) coth—

.

(127. 10)

As in formulae (126.11), (126.12), formula (127.10) can be expressed in

terms of fictitious "random forces", the action of which produces results

equivalent to the spontaneous fluctuations of the quantities x^ To do so, we

write

Xia> = (X'ihfkto, fica
~ a

-
ifcXfca) (127.11)

and

(fifh)o>
= a-~ 1U^~

1
hm(XiXrn)(0 .

Substituting (127.10), we obtain

(fifk). = £ (or^-a-V) coth^. (127.12)

From these formulae we can derive some conclusions concerning the sym-

metry properties of the quantities a
ift

(<w).
t Let us first suppose that the quanti-

ties x
t
, xh are such that they are invariant under time reversal ; then the corre-

sponding operators x
if
xk are real. We shall further suppose that the body has

t The results given below are due to H. B. Callen, M. L. Barasch, J. L. Jackson and

R. F. Greene (1952).
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no "magnetic structure" (see the first footnote to §128) and is not in an exter-

nal magnetic field; then the wave functions of its stationary states are also

real,* and consequently so are the matrix elements of the quantities x. Since

the matrices xnm are Hermitian, we have xnm = xmn* = xmn . We also see that

the right-hand side of (127.9), and consequently the left-hand side, are sym-

metrical in the suffixes i and k. Hence <x.ik*—xki
= a

fti
*—a

ift
ora

ift
+a

ift
* =

= a
fti
+a

fti
*, i.e. we conclude that the real part of <x.

ik
is symmetric.

But the real and imaginary parts (a
ife

" and <x.ik
") of each a

ift
are related by

linear integral equations, namely Kramers and Kronig's formulae. Hence the

symmetry of a
ift

' implies that of a
ift

" and therefore that of ccik itself. Our final

result is therefore

*ik = «fti- (127.13)

These relationships are somewhat modified if the body is in a constant

external magnetic field H. The wave functions of a system in a magnetic field

are not real, but have the property y*(H) = y(— H). Accordingly the matrix

elements of the quantities x are such that xnrJH) = xmn(— H), and the express-

ion on the right of (127.9) is unchanged, when the suffixes i and k are trans-

posed, only if the sign of H is simultaneously changed. We therefore obtain

the relation

a
ift
*(H)-afti(H) = afti

*(-H)-aift(-H).

Another relation is given by Kramers and Kronig's formula (125.14),

according to which

where J is a real linear operator. Adding this to the Hermitian conjugate equa-

tion <x.ik
* = — iJ(<xik*), we obtain

aifc*+a ft i = -^(«ift*-«fci);

here all the <x
ift

are, of course, taken for a fixed value of H. Hence we see that,

if the difference a
ift
* — oc

ki
has a particular symmetry property, then so has the

sum ccik
*+ a

fti
, and therefore <xik itself. Thus

a ift(H) = a
fti
(-H). (127.14)

Finally, let the quantities x include some which change sign under time

reversal. The quantum-mechanical operator corresponding to such a quantity

is purely imaginary, and so xnm = xmn* = — xmn . If the two quantities x
{ , xk

are both of this kind, the derivation of (127.13) is unaffected, but if only one

of them changes sign under time reversal, the right-hand side of equation

t The exact energy levels of a system of interacting particles can be degenerate only with

respect to the directions of the total angular momentum of the system. This source of

degeneracy can be eliminated by assuming the body to be enclosed in a vessel with immov-
able walls. The energy levels of the body will not then be degenerate, and so the correspond-

ing exact wave functions can be taken as real.
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(127.9) changes sign when the suffixes i, k are interchanged. Accordingly

(127.13) becomes

«ift = -a*.. (127.15)

Similarly in a magnetic field we have instead of (127.14)

a
ife
(H) = -aM(-H). (127.16)

All these relations can, of course, be derived also from formula (127.10)

as a consequence of the symmetry of the fluctuations with respect to time. In

the Fourier components, the effect of time reversal is to replace co by —co (if

the quantity x itself is invariant under time reversal). In the expressions (127.1)

(which are in fact different from zero only when co' = — co) this means
interchanging co and co' or, equivalently, interchanging / and k. The time sym-
metry of the fluctuations therefore implies that (x^^ = (x^x^ i.e. the

left-hand side of equation (127.10), and therefore the right-hand side, are

symmetrical in the suffixes i, k, and we again obtain the relations (127.13).

This derivation of the symmetry properties of the a
ift

is analogous to the usual

derivation of Onsager's principle of the symmetry of the kinetic coefficients,

and we shall see below that formulae (127.13)—(127.16) may be regarded as a

generalisation of that principle.

We shall now show the relationship between the foregoing general theory

and the theory of thermodynamic fluctuations. The quantities whose fluctua-

tions may be regarded as thermodynamic have the property that they satisfy

equations of the form x
t
= —y

ihXh , which describe the behaviour of a closed

system not in equilibrium. If the system is not closed but is subject to external

forces, the right-hand sides of these equations must include additional forces

which we denote by yt
:

x = -yihXk+ yi . (127.17)

It is easy to express the yi
in terms of the quantitiesft

which describe the per-

turbation in question.*

To do so, we assume that static forces act on the body, i.e. the/
t
are con-

stant. This interaction causes a "displacement" of the equilibrium state, in

which the mean values of the X
{
are no longer zero. These new mean values

can be expressed in terms of the ft
as follows. The energy of a body subject

to a constant perturbation is E = Eq—^x^ where E is the energy of the body
in the absence of the perturbation. The differential of£ is

dE=TdS+@E/df,)6fi .

t It should be emphasised that another interpretation of equation (127.17) is also pos-
sible: the quantities y { (or^) may be regarded not as resulting from some external inter-

action on a system far from equilibrium but as "random forces", the inclusion of which
in the equation makes it applicable to the fluctuating quantities xt in a closed system. This
interpretation corresponds to the form (127.12) of the fundamental formula.
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But, from the general formula (11 .4),

dE/dfi = dH/dA = dP/dfi = -*;,

and so dE = d(iso—/**,) = TdS—x
i
df

{
, or

d£ = TdS+fidXi.

Thus we find the equilibrium values

Xi= -(dS/dx^E^/JT.

On the other hand, the right-hand sides of equations (127.17) must be zero

in equilibrium. We see, therefore, that these equations can be written in terms

of thefi as

*i= -YikVh-fhlT). (127.18)

We can now derive a relation between the generalised susceptibilities a
ift

and the kinetic coefficients yik . To do so, we substitute x
{
from (127.5) in

(127.18), and write the X
{
as the linear combinations

Xi = PikXt, (127.19)

Separating the terms in e~ iwt and e
ico

'in (127.18), we obtain

MQ-imfom = yikPhl<x-lmfom~'j^yimfomf

whence, since thefom are arbitrary, we have the relations

R l

lUXX-im— YikPMfX-lm = —-jYim

or

«iH = j<£-m>- 1T\h , (127.20)

where the exponents — 1 denote the inverse matrices. These are the required

relations.

The quantities /3ik are by definition symmetric with respect to their suffixes

(since fiik
= — d2S/dx

i
dxk). Hence the symmetry of the a

ift
implies that of the

yih , i.e. the ordinary principle of the symmetry of the kinetic coefficients.

Substituting (127.20) in (127.12), we obtain

, . , . faoT , .
, ^ ,

hco
Uifk)a> = -^r <y~\h + r~\i ) coth—
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or, for the y{
= -yikfk/T,

(yiyk)<o = -^ (rik+rki) coth^

.

(127.21)

This relation differs from formula (124.10) for the fluctuations of a classical

quantity x by the factor

(fi(o/2T) coth (hco/2T). (127.22)

In the classical limit (fim <z T), this factor tends to unity, and so (127.21)

becomes the same as (124.10).



CHAPTER XIII

THE SYMMETRY OF CRYSTALS

§128. Symmetry of particle configuration in a body

The most usual properties of symmetry of macroscopic bodies relate to the

symmetry of the configuration of particles in them.

Atoms and molecules in motion do not occuply precisely defined places in

a body, and for an exact statistical description of their arrangement we must

use a "density function" q(x, y, z), which gives the probability of various con-

figurations of the particles: q dV is the probability that an individual particle

is in the volume element dV. The symmetry properties of the configuration

of the particles are determined by the co-ordinate transformations (transla-

tions, rotations and reflections) which leave the function q(x, y, z) invariant.

The set of all such symmetry transformations for a given body forms what is

called its symmetry group.

If the body consists of different kinds of atom, the function q must be deter-

mined for each kind of atom separately; this, however, is unimportant here,

since all these functions in an actual body will in practice possess the same

symmetry. We could also use the function q defined as the total electron

density due to all the atoms at each point in the body.
1-

The highest symmetry is that of isotropic bodies (bodies whose properties

are the same in all directions), which include gases, liquids and amorphous

solids. It is evident that in such a body all positions in space of any given par-

ticle must be equally probable, i.e. we must have q = constant. For if some

positions of particles were more probable than others, the properties of the

body would be different in different directions (e.g. in directions passing and

not passing through any two maxima of the probability).

In anisotropic crystalline solids, on the other hand, the density function is

not simply a constant. In this case it is a triply periodic function (with periods

equal to those of the crystal lattice) and has sharp maxima at the lattice points.

Besides translational symmetry, the lattice (i.e. the function q(x, y, z)) also

has, in general, symmetry under certain rotations and reflections. The lattice

t Moving electrons can cause not only a mean charge density eg but also a mean current

density \(x, y, z). Bodies in which there are non-zero currents are those having a "magnetic

structure", and the symmetry of the vector function }(x, y, z) determines the symmetry of

that structure. This is discussed in Electrodynamics of Continuous Media, §28.

401
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points which can be made to coincide by any symmetry transformation are

said to be equivalent. The types of crystal symmetry will be discussed in detail

in §§130-134.

A problem of fundamental interest is whether bodies can exist in Nature for

which the density function depends not on three but only on one or two co-

ordinates (R. E. Peierls 1934, and L. Landau 1937).

For example, a body with q = q(x) could be regarded as consisting of paral-

lel planes regularly arranged and lying perpendicular to the x-axis, with the

atoms randomly distributed in each plane. When q = q(x, y), the atoms

would be randomly distributed along lines parallel to the z-axis, but these

lines themselves would be regularly arranged.

To discuss this question, let us consider the displacements undergone by

small parts of the body as a result of continually occurring fluctuations. It is

clear that, if such displacements increase without limit as the size of the body

increases, there will necessarily be a "smoothing-out" of the function q, in

contradiction with hypothesis. In other words, only those distributions g can

occur for which the mean displacement remains finite when the dimensions

of the body become arbitrarily large.

Let us first confirm that this condition is satisfied in an ordinary crystal.

Let u(x, y, z) denote the vector of the fluctuation displacement of a small

region with co-ordinates x, y, z and let u be represented as a Fourier series

:

u = £uke
ikr

; (128.1)
k

this series will include only terms with not too large wave numbers, k < 1/d,

where d is the linear dimension of the region undergoing displacement. We
shall consider the fluctuations u at constant temperature ; then their probabil-

ity is given by formulae (1 19.1), (1 19.2).

To calculate AF
t
, we must expand F—F in powers of the displacement.

The expansion will involve not the function u(x, y, z) itself but only its deriv-

atives (cf. §119), since F—.Fmust vanish when u = constant, corresponding

to a simple displacement of the body as a whole. As regards the various deriv-

atives of u with respect to the co-ordinates it is evident, first of all, that the

terms in the expansion which are linear in these derivatives must be absent,

since otherwise F could not have a minimum for u = 0. Next, owing to the

smallness of the wave numbers k> we need go only as far as the terms quad-

ratic in the first derivatives of u in the expansion of the free energy, neglecting

the terms containing the higher-order derivatives. Hence we find that AF
t
has

the form

AF
t
=V^\uk \^u(kx,ky,kz),

k

where 4>u(kx , ky , k^ is a quadratic function of the components of the vector k.
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Hence it follows that the mean square of the fluctuation uk is

I I*

T l

|Uk| ~ V <t>u(kx,ky,k2
)>

and for the mean square of the total displacement u we obtain

the summation over k is approximately replaced, in the usual manner, by

multiplication by V dkx dky dkz
and integration. This integral converges pro-

portionally to k at the lower limit (k — 0). Thus the mean square of the

fluctuation displacement is a finite quantity independent of the size of the

body, as it should be.

Next, let us consider a body with density function q = q(x). Since q =
constant along the y and z axes in such a body, no displacement along

these axes can "smooth out" the density function, and such displacements are

consequently of no interest here. We need therefore consider only a displace-

ment ux . Moreover, it is easy to see that the first derivatives dujdy, dujdz

cannot appear in the expansion of the free energy, since, if the body is rigidly

rotated about the y or z axis, these derivatives change, whereas the free energy

must obviously remain constant. Thus in the expansion of F—F we have to

consider the following terms quadratic in the displacement

:

/8^\ 2 8^ /9X 6^\ (d\, d*uA*
.

\dx) ' dx ^9>>
2 Sz2 /' \8j;

2+
3z2 /'

the derivatives with respect to y and z appear symmetrically, owing to the

complete symmetry in the jz-plane. Substitution of (128.1) leads to terms of

the types

Kkl2**, \uxk \\kl+kl)kx , Kb
|

2
(A;

2 +A:2)
2

.

Although the two latter expressions include powers of the wave vector com-

ponents higher than the first expression, they may be of the same order of

magnitude, since nothing is known a priori concerning the relative magnitude

ofkx and ky,kz .

Thus the change in the free energy will be of the form

AF
t
= K£ \uxk p*n(*„*J+*5), (128.3)

where n is a quadratic function of two variables, kx and k
y
+k%. Instead of

(128.2) we now have

dkz

i+*5)'

This integral is easily seen to diverge logarithmically as k -•> 0.

MJIaf¥^
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The divergence of the mean fluctuation of the displacement ux implies that

a point to which a particular value of q(x) corresponds may be displaced

through very large distances; in other words, the density q(x) is "smoothed

out" through the whole body, so that no function q = g(x) is possible except

the trivial case q = constant.

Similar arguments for a body with q = q(x, y) give the following expression

for the mean squares of the displacements ux , uy :

dkv dk,. dk."^~ rJJJ«t*fr (128

;

5)

This integral is easily seen to converge, so that the fluctuations remain finite.

Thus a body having such a density function could in theory exist, but it is not

known whether such bodies do in fact exist in Nature.

§129. Symmetry with respect to orientation of molecules

The condition q = constant is necessary but certainly not sufficient for a

body to be isotropic. This is clear from the following example. Let us imagine

a body consisting of elongated molecules, all positions in space of a molecule

as a whole (i.e. of its centre of mass) being equally probable, but the axes of

the molecules being predominantly oriented in one direction. Such a body is

obviously anisotropic, despite the fact that g = constant for each atom pres-

ent in the molecule.

The property whose symmetry is here under consideration may be formu-

lated in terms of a mutual correlation between the positions of the different

atoms. Let Q12 dV2 be the probability of finding an atom 2 in the volume

element dV% for a given position of atom 1 (atoms of different types usually

being involved); g\% is a function of the radius vector ri2 between the two

atoms, and the symmetry properties of this function determine the symmetry

of the body (in which q = constant).

The fact that the density function q is constant signifies that a relative dis-

placement of parts of the body (without change of volume) does not affectthe

equilibrium state of the body, i.e. does not change its thermodynamic quan-

tities. This is precisely the characteristic property of liquids (and gases). We
must therefore regard bodies with q = constant and an anisotropic function

^12(1*12) as liquid crystals, that is, anisotropic fluids.

When the length of the vector r12 varies without change in its direction, the

functions oi* do not, of course, display any periodicity, though they may

undergo oscillations. Thus these functions do not possess translational sym-

metry, and their symmetry groups can consist only of certain rotations and

reflections, i.e. are what are calledpoint groups.*

t See Quantum Mechanics, §93.
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Regarding liquid crystals as bodies with an anisotropic correlation o12 , we
can therefore say that their possible types of symmetry are classified in accord-

ance with the point groups, and the order of the axes of symmetry in these

groups is arbitrary. In particular, liquid crystals are possible with an axis of

complete axial symmetry (the groups CTO , C„ h , C„v , D^, D^; it is custo-

mary to suppose that all known liquid crystals are of these types, but it must

be borne in mind that optical observations do not enable us to distinguish

an axis of complete axial symmetry from one of order n > 2.

Finally, it may be mentioned that in ordinary isotropic liquids also there

are two different types of symmetry. If the liquid consists of a substance which

does not have stereoisomers, it is completely symmetrical not only under a

rotation through any angle about any axis but also under a reflection in any

plane, i.e. its symmetry group is the complete group of rotations about a point,

together with a centre of symmetry (groupK
ft
). If the substance has two stereo-

isomeric forms, however, and the liquid contains different numbers of mole-

cules of the two isomers, it will not possess a centre of symmetry and there-

fore will not allow reflections in planes. Its symmetry group is just the com-

plete group of rotations about a point (group K).

§130. Symmetry elements of a crystal lattice

Proceeding to study the symmetry of a crystal lattice, we must first of all

ascertain which elements can contribute to this symmetry.

The symmetry of a crystal lattice is based on its spatial periodicity, the prop-

erty of being unchanged by a parallel displacement or translation through

certain distances in certain directions* ; translational symmetry will be further

discussed in §131.

As well as translational symmetry, the lattice may also be symmetrical

under certain rotations and reflections ; the corresponding symmetry elements

(axes of symmetry, planes of symmetry, and rotary-reflection axes) are the

same as those which can occur in symmetrical bodies of finite size."

In addition, however, crystal lattices can also possess symmetry elements

consisting of combinations of parallel translations with rotations and reflec-

tions. Let us first consider combinations of translations with the axes of sym-

metry. The combination of an axis of symmetry with a translation in a direc-

tion perpendicular to the axis does not give a new type of symmetry element.

It is easy to see that a rotation through a certain angle followed by a transla-

tion perpendicular to the axis is equivalent to a rotation through the same

t It will be recalled that, of these, only Coo, and !>«,* can appear as the symmetry groups
of a single molecule; see Quantum Mechanics, §98.

t Here the crystal lattice must be regarded as infinite, ignoring the faces of the crystal.

II See Quantum Mechanics, §91.
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angle about an axis parallel to the first. The combination of a rotation about

an axis and a translation along that axis leads to a new type of symmetry ele-

ment, a screw axis. The lattice has a screw axis of order n if it is unchanged by

rotation through an angle 2jz/n about the axis, accompanied by translation

through a certain distance d along the axis.

After n rotations, with accompanying translations, about a screw axis of

order n, the lattice is simply shifted along the axis by a distance nd. Thus, when

there is a screw axis, the lattice must certainly also have a simple periodicity

along this axis with a period not exceeding nd. This means that screw axes of

order n can be correlated only with translations through distances d = pa\n

(p = 1 , 2, . .
.

, n — 1), where a is the smallest period of the lattice in the direction

of the axis. For example, a screw axis of order 2 can be of only one type, the

translation being through half a period ; screw axes of order 3 can be corre-

lated with translations by £ or § period, and so on.

Similarly, we can combine translations with planes of symmetry. Reflection

in a plane together with translation in a direction perpendicular to the plane

does not give a new type of symmetry element, since such a transformation

is easily seen to be equivalent to a reflection in a plane parallel to the first. The

combination of a reflection with a translation along a direction lying in the

reflection plane leads to a new type of symmetry element, a glide-reflection

plane or glide plane. The lattice has a glide-reflection plane if it is unchanged

by a reflection in this plane, accompanied by a translation through a certain

distance d in a certain direction lying in this plane.

A twofold reflection in a glide-reflection plane amounts to a translation

through a distance 2d. It is therefore clear that a lattice can have only glide-

reflection planes such that the translation distance d = %a, where a is the small-

est period of the lattice in the direction of the translation.

The combination of rotary-reflection axes with translations does not lead

to new types of symmetry element, since in this case any translation can be

resolved into two parts, one perpendicular to the axis and the other parallel

to it and therefore perpendicular to the reflection plane. Thus a rotary-

reflection transformation followed by a translation is always equivalent to

another rotary-reflection transformation about an axis parallel to the first.

§131. The Bravais lattice

The translational periods of a lattice can be represented by vectors a whose

directions are those of the respective translations and whose magnitudes are

equal to the distances concerned. The lattice has an infinity of different lat-

tice vectors. These vectors are not all independent, however: one can always

choose in a crystal lattice three basic lattice vectors (corresponding to the three

dimensions of space) which do not lie in one plane, and then any other lattice
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vector can be represented as a sum of three vectors each an integral multiple

of one of the basic vectors. If the basic vectors are denoted by ai, a2 , sl3 , an

arbitrary lattice vector a will be of the form

a = «iai+«2a2+«3a3, (131.1)

where «i, «2, "3 are any positive or negative integers or zero.

The choice of the basic lattice vectors is not unique. On the contrary, these

vectors may be chosen in an infinity of ways. Let ai, a2 , a3 be basic lattice vec-

tors, and let us replace them by other vectors a[, ag, ag, defined by the formu-

lae

< = Sa iftaft (/, k = 1, 2, 3), (131.2)
h

where the cc
ik

are some integers. If the new periods a^ are also basic lattice vec-

tors, then, in particular, the vectors a
t
must be expressible in terms of the a^ as

linear functions with integral coefficients; then any other lattice vector can also

be expressed in terms of the a
t
'. In other words, if we express the a

{
in terms

of the aj in accordance with (131.2), the resulting formulae must be of the

type

a i = Eftftaft>

ft

with the £ift
again integral. The determinant |/?ift |

is the reciprocal of the deter-

minant |a
ift |, and since both are integers it follows that the equation

|aift |

= ±l (131.3)

is a necessary and sufficient condition for the aj to be basic lattice vectors.

Let us choose a lattice point and mark off from it three basic lattice vec-

tors. The parallelepiped formed by the three vectors is called a unit cell of the

lattice. The whole lattice can then be regarded as a regular assembly of such

parallelepipeds. All the unit cells, are of course, identical in their properties;

they have the same shape and size, and each contains the same number of

atoms of each kind identically arranged.

It is evident that identical atoms will be found at every vertex of every unit

cell. All these vertices, therefore are, equivalent lattice points, and each can be

brought to the position of any other by translation through a lattice vector.

A set of all such equivalent points which can be brought into coincidence by a
translation forms what is called a Bravais lattice of the crystal. This clearly

does not include every point of the crystal lattice; indeed, in general it does not

even include all equivalent points, since the lattice may contain equivalent

points which can be made to coincide only by transformations involving

rotations or reflections.

The Bravais lattice can be constructed by selecting any crystal lattice point

and performing all possible translations. By taking initially some other point

not in the first Bravais lattice we should obtain another Bravais lattice
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displaced relative to the first. It is therefore clear that the crystal lattice in

general consists of several interpenetrating Bravais lattices, each correspond-

ing to atoms of a particular type and position. All these lattices, regarded as

sets of points (i.e. purely geometrically), are completely identical.

Let us return now to the unit cells. Because the choice of the basic lattice

vectors is arbitrary, that of the unit cell is also not unique. The unit cell can

be constructed from any basic vectors. The resulting cells are, of course, of

varying shapes, but their volumes are all equal. This is most simply seen as

follows. It is clear from the above discussion that each unit cell contains one

point belonging to each of the Bravais lattices that can be constructed in the

crystal concerned. Consequently, the number of unit cells in a given volume is

always equal to the number of atoms of a particular type and position, i.e.

is independent of the choice of cell. The volume of each cell is therefore the

same, and equal to the total volume divided by the number of cells.

§132. Crystal systems

Let us now consider the possible types of symmetry of the Bravais lattices.

First, we shall prove a general theorem concerning the symmetry of crystal

lattices with respect to rotations. Let us see which axes of symmetry the lattice

can have. Let A (Fig. 56) be a point of a Bravais lattice, lying on an axis of

symmetry perpendicular to the plane of the diagram. If B is another point

separated fromA by one of the possible translations, a similar axis ofsymmetry

must pass through B.

Let us now perform a rotation through an angle (j> = l7t\n about the axis

through A, where n is the order of the axis. Then the point B and the axis

through it will move to B'. Similarly, a rotation about B carries A into A'.

From their construction, the points A' and B' belong to the same Bravais

lattice as A and B, and so can be made to coincide by a translation. The dis-

tance A'B' must therefore also be a translational period of the lattice. If a is

the shortest period in the direction concerned, the distance A'B' must there-

fore be equal to pa with p integral. It is seen from the figure that this gives

a+ 2a sin (</>— \n) = a— 2a cos

= pa,

or cos
(f)
— ^(1 —p).
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Since |cos <f>\
=s 1, p can be 3, 2, 1 or 0. These values correspond to

$ = 2rcfn with n = 2, 3, 4 or 6. Thus the crystal lattice can have axes of

symmetry only of order 2, 3, 4 and 6.

Let us now examine the possible types of symmetry of the Bravais lattice

under rotations and reflections. These types of symmetry are called crystal

systems, and each corresponds to a certain set of axes and planes of symmetry,

i.e. is a point group.

It is easy to see that every point of a Bravais lattice is a centre of symmetry

thereof. For to each atom in a Bravais lattice there corresponds another atom

collinear with that atom and with the lattice point considered, and such that

the two atoms are equidistant from this lattice point. If the centre of symmetry

is the only symmetry element of the Bravais lattice (apart from translations),

we have

1. The triclinic system. This system, the least symmetrical of all, corre-

sponds to the point group C
t
. The points of a triclinic Bravais lattice lie at

the vertices of equal parallelepipeds with edges of arbitrary lengths and arbi-

trary angles between edges. Such a parallelepiped is shown in Fig. 57.

The Bravais lattices are customarily denoted by special symbols; that of the

triclinic system is denoted byr
t

.

2. The monoclinic system is next in degree of symmetry. Its symmetry ele-

ments are a second-order axis and a plane of symmetry perpendicular to this

axis, forming the point group C2h . This is the symmetry of a right parallel-

epiped with a base of any shape. The Bravais lattice for this system can be

constructed in two ways. In one, called the simple monoclinic Bravais lattice

(T^), the lattice points are at the vertices of right parallelepipeds with the ac

face an arbitrary parallelogram (Fig. 57). In the other, the base-centred lat-

tice OT^), the lattice points are not only at the vertices but also at the centres

of opposite rectangular faces of the parallelepipeds.

3. The orthorhombic sytem corresponds to the point group D2h . This is

the symmetry of a rectangular parallelepiped with edges of any length. The

system has four types of Bravais lattice. In the simple orthorhombic lattice

(r
o), the lattice points are at the vertices of rectangular parallelepipeds. In the

base-centred lattice (.Tj), there are in addition lattice points at the centre of

two opposite faces of each parallelepiped. In the body-centred lattice (J^), the

points are at the vertices and centres of the parallelepipeds; finally, in the face-

centred lattice (Tj), the points are at the vertices and at the centre of each

face.

4. The tetragonal system represents the point group D4h ; this is the symmetry

of a right square prism. The Bravais lattice for this system can be constructed

in two ways, giving the simple and body-centred tetragonal Bravais lattices

(T
q
and Jp, whose points lie respectively at the vertices and at the vertices

and centres of right square prisms.
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5. The rhombohedral system corresponds to the point group Jhd; this is the

symmetry of a rhombohedron (a solid formed from a cube by stretching or

compressing it along a spatial diagonal). In the only Bravais lattice possible

in this system (-Trh) the lattice points are at the vertices of rhombohedra.

6. The hexagonal system corresponds to the point group Deh ; this is the

symmetry of a regular hexagonal prism. The Bravais lattice for this system

(r^ can be constructed in only one way; its lattice points are at the vertices
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of regular hexagonal prisms and at the centres of their hexagonal bases. It is

useful to mention the following difference between the rhombohedral and
hexagonal Bravais lattices. In both, the lattice points lie in planes perpendic-

ular to the axis of order 3 or 6, and form a network of equilateral triangles;

but in the hexagonal lattice the points are directly superimposed in successive

such planes (in the direction of the C6 axis); these planes are shown in plan in

Fig. 58. In the rhombohedral lattice, on the other hand, the points in each
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plane lie above the centres of the triangles formed by the points in the previous

plane, as shown by the circles and crosses in Fig. 58.

7. The cubic system corresponds to the point group Oh ; this is the symmetry

of a cube. This system has three types of Bravais lattice : the simple cubic (T^,

the body-centred cubic (T%) and the face-centred cubic (T^).

In the sequence of systems : triclinic, monoclinic, orthorhombic, tetragonal,

cubic, each has higher symmetry than those which precede it, i.e. each con-

tains all the symmetry elements which appear in the preceding ones. The rhom-

bohedral system is similarly of higher symmetry than the monoclinic, while at

/ \ / \ / v

V-— _fc.—^ *

/ \ / \ / \
I X \ / X \ / X \

Fig. 58

f^£

L..-M
<te

df-\~*

Fio. 59 Fig. 60

the same time it is of lower symmetry than the cubic and hexagonal systems

:

its symmetry elements are present in both of the latter, which are the two

systems of highest symmetry.

We may also mention the following fact. It might appear at first sight that

further types of Bravais lattice beyond the fourteen listed above are possible.

For instance, if we add to the simple tetragonal lattice a point at the centre of

each opposite square base of the prisms, the lattice would again be of tetra-

gonal symmetry. However, it is easy to see that this would not give a new

Bravais lattice. For, on joining the points of such a lattice in the manner indi-

cated in Fig. 59 by the broken lines, we see that the new lattice is again a simple

tetragonal one. The same is easily found to be true in all similar cases.

The Bravais lattice parallelepipeds shown in Fig. 57 themselves have all

the symmetry elements of the system to which they belong. However, it must

be remembered that, for all the Bravais lattices except the simple ones, these

parallelepipeds are not unit cells : the lattice vectors from which they are con-

structed are not basic ones. As the basic lattice vectors in the face-centred Bra-

vais lattices we can take the vectors from any vertex of the parallelepiped to

the centres of the faces, in the body-centred lattices from a vertex to the centres

of the parallelepipeds, and so on. Fig. 60 shows the unit cells for the cubic

lattices Ff
c
and Fv

c \ these cells are rhombohedra and do not themselves possess

all the symmetry elements of the cubic system.
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In order to define completely the triclinic Bravais lattice, it is necessary to

specify six quantities : the lengths of the edges of its parallelepipeds and the

angles between the edges. In the monoclinic system four quantities are suffi-

cient, since two of the angles between the edges are always right angles. Simi-

larly, we easily find that the Bravais lattices of the various systems are defined

by the following numbers of quantities (lengths of edges of parallelepipeds or

angles between edges): triclinic 6, monoclinic 4, orthorhombic 3, tetragonal 2,

rhombohedral 2, hexagonal 2, cubic 1.

§133. Crystal classes

In many effects which may be called macroscopic, a crystal behaves as a

homogeneous and continuous body. The macroscopic properties of the crys-

tal depend only on the direction considered in it. For example, the properties

of the passage of light through a crystal depend only on the direction of the

light ray; the thermal expansion of a crystal is in general different in different

directions ; finally, the elastic deformations of a crystal under various external

forces also depend on direction.

On the other hand, the symmetry of crystals brings about an equivalence of

various directions in them. All macroscopic properties of a crystal will be

exactly the same in such directions. We can therefore say that the macro-

scopic properties of the crystal are determined by the symmetry of directions

in it. For instance, if the crystal has a centre of symmetry, every direction in

it will be equivalent to the opposite direction.

Translational symmetry of the lattice does not lead to equivalence of direc-

tions, since parallel displacements do not affect directions. For the same rea-

son, the difference between screw axes and simple axes of symmetry, and

between simple planes of symmetry and glide-reflection planes, does not

affect the symmetry of directions.

Thus the symmetry of directions, and therefore that of the macroscopic

properties of the crystal, are determined by its axes and planes of symmetry,

with screw axes and glide planes regarded as ordinary axes and planes. Such

sets of symmetry elements are called crystal classes.

As we already know, an actual crystal may be regarded as a set of several

interpenetrating identical Bravais lattices. Because of this superposition of

the Bravais lattices, the symmetry of an actual crystal is in general different

from that of the corresponding Bravais lattice.

In particular, the set of symmetry elements forming the class of a given

crystal is in general different from its system. It is evident that the addition of

further points to a Bravais lattice can only eliminate some of its axes or planes

of symmetry, not introduce new ones. Thus the crystal class contains fewer

(or at most the same number of) symmetry elements than the corresponding
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system, i.e. the set of axes and planes of symmetry of the Bravais lattice of the

crystal in question.

From this we can derive a method of finding all the classes belonging to a

given system. To do so, we must find all the point groups which contain some

or all of the symmetry elements of the system. It may happen, however, that a

point group thus obtained comprises symmetry elements present in more than

one system. For example, we have seen in §132 that all Bravais lattices have

a centre of symmetry. The point group C
{
is therefore present in all systems.

Nevertheless, the distribution of crystal classes among systems is usually

physically unique: each class must be assigned to the system of lowest

symmetry among those which contain it. For example, the class C
i
must be

assigned to the triclinic system, which has no symmetry element except a

centre of inversion. With this method of assigning the classes, a crystal having

a certain Bravais lattice will never be placed in a class which could be con-

structed from a Bravais lattice of a system of lower symmetry—with one

exception (see below).

The necessity of satisfying this condition is physically evident : it is phys-

ically most improbable that the atoms in a crystal which belong to its Bravais

lattice should be arranged more symmetrically than is required by the sym-

metry of the crystal. Moreover, even if such a configuration were to occur

by chance, any external perturbation, even a weak one (heating, for example),

would be sufficient to destroy this configuration, since it is not imposed by

the symmetry of the crystal. For instance, if a cubic Bravais lattice were to

occur in a crystal belonging to a class for which the tetragonal system was

sufficient, even a slight interaction would be capable of lengthening or short-

ening one of the edges of the cubic cell, converting it into a right square

prism.

From this example we see the importance of the fact that the Bravais lattice

of a system of higher symmetry can be converted to that of a system of lower

symmetry by means of an arbitrarily small deformation. There is one excep-

tional case, however, where such a transformation is not possible : a hexagon-

al Bravais lattice can not be converted by any infinitesimal deformation

into the lattice of the rhombohedral system, which is of lower symmetry. For

we see from Fig. 58 that, to transform the hexagonal into the rhombohedral

lattice, it is necessary to move the vertices in alternate layers by a finite amount

from the vertices to the centres of the triangles. In consequence, all the classes

of the rhombohedral system can be obtained with either a hexagonal or a

rhombohedral Bravais lattice.*

Thus, to find all the crystal classes, we must first look for the point groups

of the triclinic system, which has the lowest symmetry, and then go on in turn

t Crystals of rhombohedral classes with a hexagonal Bravais lattice are usually assigned

to the rhombohedral system.
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to systems of higher symmetry, omitting those of their point groups (i.e.

classes) which have already been assigned to systems of lower symmetry. It is

found that there are altogether 32 classes; a list of these arranged according
to systems is as follows.

System

Triclinic

Monoclinic
Orthorhombic
Tetragonal

Rhombohedral Cz , S«, C37, D3 , D3d
Hexagonal

Cubic

Classes

Ci, Ci
C s , C2, C2h

C2v , D2 , D2h

S4 , D2d, C4 , Cih>

^4V5 D*, Dih

C9 , &6' Czvi #3,
Czh, D3h> Cq, Cth,
c§v , D«, D*h
T, Th , Td , O, o>

In each of these sets of classes the last is the one of highest symmetry, and
contains all the symmetry elements of the corresponding system. The classes

whose symmetry is equal to that of the system are called holohedral classes.

Those whose number of different symmetry transformations (rotations and
reflections, including the identical transformation), is less than for a holo-
hedral class by a factor of two or four are called hemihedral and tetartohedral
classes respectively. For example, in the cubic system the class Oh is holo-
hedral, O, Th and Td are hemihedral, and T is tetartohedral.

§134. Space groups

Having studied the symmetry of the Bravais lattices and the symmetry of
directions in the crystal, we can, finally, go on to consider the complete actual
symmetry of crystal lattices. This symmetry may be termed microscopic, in

contradistinction to the macroscopic symmetry of crystals discussed in §133.
The microscopic symmetry determines those properties of a crystal which
depend on the arrangement of the atoms in its lattice (e.g. the scattering of
X-rays by the crystal).

The set of (actual) symmetry elements of the crystal lattice is called its

space group. The lattice always has a certain translational symmetry, and may
also have simple, rotary-reflection and screw axes of symmetry and simple
and glide-reflection planes of symmetry. The translational symmetry of the
lattice is entirely determined by its Bravais lattice, since by the definition of
the latter the crystal lattice can have no translational periods except those of
its Bravais lattice. Hence, to determine the space group of a crystal, it is

sufficient to find the Bravais lattice and to enumerate the symmetry elements
which involve rotations and reflections, including of course the relative
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position of these axes and planes of symmetry. It must also be remembered

that the translational symmetry of the crystal lattice means that, if the lattice

possesses an axis or plane of symmetry, there exists an infinity of parallel axes

or planes which are carried into one another by displacements through the

lattice vectors. Finally, in addition to these axes (or planes) of symmetry

separated by lattice vectors, the simultaneous presence of translational sym-

metry and the axes (or planes) of symmetry results in the existence of other

axes (or planes) which can not be made to coincide with the former by a trans-

lation through any lattice vector. For example, the presence of a plane of

symmetry involves not only planes parallel to it at distances equal to the lat-

tice vector but also planes of symmetry which bisect each lattice vector: it

is easily seen that reflection in any plane followed by translation through a

distance d in a direction perpendicular to the plane is equivalent to reflection

in a plane parallel to the first and at a distance ^/from it.

The possible space groups can be divided among the crystal classes, each

space group being assigned to the class where the set of axes and planes of

symmetry is the same as in the space group when no distinction is made in the

latter between simple and screw axes and between simple and glide planes.

Altogether 230 different space groups are possible; they were first found by

E. S. Fedorov (1895). The space groups are distributed among classes as

shown in Table 1.

Table 1

Class Number of groups

Ci 1

Ct 1

cs
4

c 2 3

c2h 6

C2v
22

*>2 9

D2h 28

S* 2

Ct 6

Cih 6

D2d 12

Civ 12

D* 10

D*h 20

c3 4

riass Number of groups

s« 2

Czv 6

D3 7

D3d 6

Csh 1

C« 6

Cm 2

D*h 4

C& 4

D* 6

D,h 4

T 5

Th 7

Td 6

O 8

oh 10

We shall not pause here to enumerate the symmetry elements of all the

space groups, which would be a very lengthy process. They may be found in

manuals of crystallography. 1
"

t A full account of the space groups is given, for example, by G. Yu. LyubarskiI, The

Application of Group Theory in Physics, Pergamon, Oxford 1960, and in the International
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Here the following point may be noted. Among the space groups there are

some which differ only in the direction of rotation about their screw axes.

There are in all 1 1 such pairs of space groups.

§135. The reciprocal lattice

All physical quantities which describe the properties of a crystal lattice have

the same periodicity as the lattice itself. Such quantities are, for example, the

electromagnetic field created in the lattice by the atoms forming it, the charge

density due to the electrons in these atoms, the probability of finding an atom
at a particular point in the lattice, and so on.

Let U be any such quantity. U is a function of the co-ordinates x, y, z of

the point in the crystal or, as we shall write it, of the radius vector r of the

point. The function U(r) must be periodic, with the same periods as those of

the lattice itself. This means that we must have

t/(r+«iai+/?2a2+«3a 3) = U(r) (135.1)

for any integral n x , n2 , «3 (a 1? a2 , a 3 being the basic vectors of the lattice).

Let us expand the periodic function U(r) as a triple Fourier series, which

may be written

t/ = ££/be2"i»>.r5 (135.2)
b

where the summation is over all possible values of the vector b. These are

determined from the requirement that the function U, when put in the form
of the series (135.2), satisfies the periodicity condition (135.1). This means that

the exponential factors must be left unchanged when r is replaced by r+a, a

being any lattice vector. For this to be so it is necessary that the scalar pro-

duct a«b should always be integral. Taking a successively as the basic vectors

ai, a 2 , a3 , we must therefore have ai»b = p l9 a2»b = p2 , a3 »b = ps , where

Pi, P2, Ps are positive or negative integers or zero. The solution of these three

equations has the form

b= />ibi+/?2b 2 +/?3b 3 , (135.3)

where the vectors b
t
are given in terms of the a

t
by

bi = a 2Xa3/v, b 2 = a 3 Xai/v, b3 = aiXa 2/v, v = ai«a 2Xa3 . (135.4)

We have thus determined the possible values of the vector b. The summation
in (1 35.2) is taken over all integral values ofpi, p2 , pz-

Geometrically, the product v = a 1»a 2Xa3 represents the volume of the

parallelepiped formed by the vectors ai, a 2 , a 3 , i.e. the volume of the unit cell;

Tables for the Determination of Crystal Structures, Bell, London 1935. The latter also lists

the equivalent points for each space group.
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the products aiXa2 etc. represent the areas of the three faces of this cell. The

vectors b
4
therefore have the dimensions of reciprocal length, and in magni-

tude are equal to the reciprocal altitudes of the parallelepiped formed by the

vectors ai, a2, a3.

From (135.4) it is seen that b
{
and a

t
are related by

ai«bft
= if i ?± k,

= 1 if i = k. (135.5)

Hence the vector bi is perpendicular to &2 and a3, and similarly for b2 and b3.

Having defined the vectors b
i?
we can formally construct a lattice with

bi, b2, bs as basic vectors. This is called the reciprocal lattice, and the vectors

bit 1>2, &3 are called the (basic) vectors of the reciprocal lattice.

It is evident that the reciprocal lattice cell corresponding to a triclinic Bra-

vais lattice will also be an arbitrary parallelepiped. Similarly, the reciprocal lat-

tices of the simple Bravais lattices of the other systems are also simple lattices

of the same system; for example, the reciprocal lattice of a simple cubic Bra-

vais lattice also has a simple cubic cell. It is also easy to see by a straightfor-

ward construction that the reciprocal lattices ofthe face-centred Bravais lattices

(orthorhombic, tetragonal and cubic) are body-centred lattices of the corre-

sponding systems, and conversely that the body-centred Bravais lattices have

face-centred reciprocal lattices. Finally, base-centred lattices have reciprocal

lattices which are also base-centred.

Let us calculate the "volume" of the unit cell of the reciprocal lattice. This

is v' — bi»b2Xb3 . Substitution of the expressions (135.4) gives

v' =

-

T a 2 Xa3«(a3Xai)X(aiXa 2)

= -^(a 2 Xa3«ai)(a3Xai«a2)

= l/v. (135.6)

Thus the volume of the unit cell of the reciprocal lattice is the reciprocal of

that of the original lattice.

An equation of the form b»r = constant, where b is a given vector, repre-

sents a plane perpendicular to the vector b and at a distance from the origin

equal to the constant divided by b. Let us take the origin at any of the Bra-

vais lattice points, and let b = pibi+pdbz+pdbs be any vector of the recip-

rocal lattice (pi, p2 , pz being integers). Also writing r in the form r = «iai+

+«2a2+«3as, we obtain the equation of a plane:

b«r = nip 1+?i2P2+n3p3 = m, (135.7)

where m is a given constant. If this equation represents a plane containing

an infinity of Bravais lattice points (called a crystal plane), it must be satisfied
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by a set of integers «i, n2 , nz. For this to be so, the constant m must clearly be

an integer also. For givenp!,p 2,pa, when the constant m takes various integral

values, equation (135.7) successively defines an infinity of crystal planes which

are all parallel. A particular family of parallel crystal planes thus defined cor-

responds to each reciprocal lattice vector.

The numbers pi,p2,Pz in (135.7) can always be taken as mutually prime,

i.e. as having no common divisor except unity. If there were such a divisor,

both sides of the equation could be divided by it, leaving an equation of the

same form. The numbers pi, p2 , Pz are called the Miller indices of the family

of crystal planes in question and are written as (pip2pz)-

The plane (135.7) intersects the co-ordinate axes (taken along the basic

lattice vectors ai, a2 , a3) at the points ma^px, ma2jp2 , ma3/p3 . The ratio of

the intercepts (measured in units of a\, a2 , az respectively) is l//?i : \\p2 \ l/pz,

i.e. they are in inverse proportion to the Miller indices. For instance, the

Miller indices of planes parallel to the co-ordinate planes (i.e. having inter-

cepts in the ratio ~: °° : 1) are (100), (010), (001) for the three co-ordinate

planes respectively. Planes parallel to the diagonal plane of the basic paral-

lelepiped of the lattice have indices (1 1 1), and so on.

It is easy to find the distance between two successive planes of the same
family. The distance of the plane (135.7) from the origin is m/b, where b is the

"length" of the reciprocal lattice vector concerned. The distance of the next

plane from the origin is (m+l)/b, and the distance d between these two planes

is(m+l)/b— m/b, or

d=l/b. (135.8)

It is the reciprocal of the length of the vector b.

§136. Irreducible representations of space groups

The physical applications of the theory of symmetry generally involve using

the mathematical formalism of what are called representations of groups.
1-

In

particular, such applications will be encountered in the next chapter. Since

the symmetry of crystals will be involved, it is necessary to discuss first the

question of the classification and method of constructing the irreducible rep-

resentations of the space groups.

Each space group contains a sub-group of translations comprising an infin-

ity of all possible parallel displacements which leave the crystal lattice

unchanged; this sub-group is the mathematical expression of the Bravais

lattice of the crystal. The complete space group is obtained from this sub-

group by adding n elements involving rotations and reflections, where n is

t The reader is assumed familiar with group theory to the extent given, for example, in

Quantum Mechanics, Chapter XII.
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the number of symmetry transformations of the corresponding crystal class

;

we shall call these the "rotational" elements. Every element of the space group

may be represented as the product of one of the elements of translational

symmetry and one of the "rotational" elements.

If the space group does not contain essential screw axes and glide planes

(see below), the n rotational elements can be taken simply as the n symmetry

transformations (rotations and reflections) of the crystal class ; in this case

these same elements also form a sub-group of the space group. In the contrary

case, the rotational elements are rotations and reflections combined with a

simultaneous translation through a certain fraction of one of the basic vec-

tors of the lattice. In such space groups, the rotational elements of symmetry

are "interlinked" with translations and do not themselves form a sub-group;

for example, a repeated reflection in a glide plane is not an identical transfor-

mation but a translation through one of the basic vectors of the lattice.

Any irreducible representation of the space group can be given by a set of

functions of the form1
"

<Ka = "kaeikr, (136.1)

where the k are constant vectors, the w
kfle

are periodic functions with the same

periods as those of the lattice, and the suffix a = 1, 2, . . . labels functions

with the same k.

As a result of a parallel displacement, i.e. a transformation of the form

r — r+a (where a is any vector of the lattice), the functions (136.1) are multi-

plied by constants e*'
a

. In other words, the matrices of translations are dia-

gonal in the representation given by the functions (136.1). It is evident that

two vectors k which differ by 2rcb (where b is any vector of the reciprocal

lattice) will give the same law of transformation of the functions ka by trans-

lations: since a»b is an integer, e
2m*'h = 1. Such vectors k will be said to be

equivalent. If we imagine the vectors k/27t drawn from a vertex of a reciprocal

lattice cell to various points, the non-equivalent vectors will correspond to

the points in one unit cell.

By the application of a rotational element of symmetry, the function <£ka

is transformed into a linear combination of the functions <j>k ,a with various

values of a and a vector k' which is obtained from k by means of the rotation

or reflection in question, performed in the reciprocal lattice.* The set of all

(non-equivalent) vectors k which can be obtained from one another by the

application of all n rotational elements of the group is called the star of the

vector k. In the general case of arbitrary k the star contains n vectors. The

functions
koe

which form the basis of an irreducible representation must

always include functions having all the different vectors of the star of k: it is

t The arguments below are due to F. Seitz (1936).

t In transforming the vector k in the reciprocal lattice, all axes and planes of symmetry
must, of course, be treated as simple ones.
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clear that, since functions with non-equivalent k are multiplied by different

factors under translations, no choice of linear combinations of them can bring

about a decrease in the number of functions which are transformed into

combinations of one another.

For certain values of k the number of vectors in its star may be less than n,

since it may happen that some of the rotational elements of symmetry leave k
unchanged or transform it into an equivalent vector. For example, if the vec-

tor k is along an axis of symmetry, it is unchanged by rotations about this

axis ; a vector of the form k = 7ib
t , where b^ is one of the basic vectors of the

reciprocal lattice, is transformed by inversion into the equivalent vector

—Trbj = jrb^— 271^.

The set of rotational elements of symmetry (regarded as all being simple)

which appear in a given space group and which do not alter the vector k
(or which transform it into an equivalent vector) will be called the proper

symmetry group of the vector k, or simply the group of k; it is one of the

ordinary point symmetry groups.

Let us first consider the simple case where the space group includes no

screw axes or glide planes. The base functions of an irreducible representation

of such a group can be written as products

<£ka = «a^k> (136.2)

where the ua are periodic functions and the y)k are linear combinations of the

expressions e
lk ' r (with equivalent k) invariant with respect to the transforma-

tions in the proper symmetry group of the vector k; in (136.2) this vector

takes all the values in its star. In translations the periodic functions ua are

unchanged, but the functions yk , and therefore the <£ka , are multiplied by eik
'a

.

In rotations and reflections belonging to the group of k, the functions ipk are

unchanged but the functions ua are transformed into combinations of one

another. Thus the functions ua give one of the irreducible representations of

the point group of k, these being called in this connection small representa-

tions. Finally, rotational elements which are not in the group of k transform

sets of functions (136.2) with non-equivalent k into combinations of one

another. The dimension of the representation of the space group thus con-

structed is equal to the number of vectors in the star of k multiplied by the

dimension of the small representation.

Thus the problem of finding all irreducible representations of space groups

(having no screw axes or glide planes) reduces entirely to the classification of

the vectors k with respect to their proper symmetry and the known problem

of discovering the irreducible representations of finite point groups.

Let us now consider space groups which have screw axes or glide planes.

The presence of such elements of symmetry is still unimportant if the vector k

is such that it remains unchanged (i.e. is not transformed into an equivalent
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vector) under all the transformations in its groups In this case the corre-

sponding representations are again given by functions of the form (136.2), in

which the ua form the basis of a representation of the point group of the vec-

tor k. The only difference from the previous case will be that under rotational

transformations the functions yk = e
ik *r

in (136.2) will not remain unchanged,
but will be multiplied by e

ik ' T
, where r is the part of the lattice period through

which the translation occurs which pertains to a screw axis or glide plane.

For all other values of k, functions of the form (136.2) become inappli-

cable. In a rotational transformation with a simultaneous translation r,

functions e
lk 'T with equivalent but different values of k are multiplied by differ-

ent factors (since b»r is not integral), and therefore their linear combina-
tions yk will not be transformed into combinations of one another.

In such cases it is no longer possible to consider the rotational elements and
the translations separately, but of the infinity of translations it is sufficient

to consider a finite number only. We shall call the extended group of the vec-

tor k the group consisting of the corresponding rotational transformations
(together with the relevant translations through fractions of a period t) and
those translations for which k«a/2rc is not integral; the translations for which
k.a/2?r is integral are regarded as identical transformations. The functions <£ka
which give irreducible representations of the finite group thus formed, toge-

ther with the corresponding functions #k ,a for other vectors in the star of k,

give irreducible representations of the space group. The dimension of these

representations is equal to the dimension of the representation of the extended
group of the vector k, multiplied by the number of vectors in the star.

This procedure will now be demonstrated for a specific example. In order to

characterise explicitly the elements of the space group, it is convenient to
denote them by symbols (P

|
t), whereP is any rotation or reflection, and t the

vector of a simultaneous translation; the effect of this element on the radius
vector r of any point is shown by (P|t)r = Pr+t. The multiplication of ele-

ments follows the obvious rule (P'
1
1') (P 1 1) = (P'P |P't+t'). In particular, the

element inverse to (P 1 1) is (P 1 1)
_1 = (P-1 | -P_1

t).

Let us consider the space group (D^ which corresponds to the simple
orthorhombic Bravais lattice and contains the following rotational elements:

0|0), (cvio), (C2
y
|0), (C2

2
|0),

(I\r), (<*x \t), Kl*). 2 1
*),

the x, v and z axes being taken along the three basic vectors of the lattice;

T = Kai+a 2+a3); the axes of symmetry C2 are simple axes but the planes a
perpendicular to them are glide planes.

t This always includes, in particular, the vector k = and a vector in a general position
in which the unit element of its group is the identical transformation.
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Let us take, for example, the vector k/2rc = (|,0, 0); the three numbers in

parentheses give the components of the vector along the x, y and z axes,

measured in units of the edge lengths (b
{
= 1 /a

{)
of the reciprocal lattice cell.

Its proper symmetry includes all the axes and planes of the point group D2hi

and so this vector is its own star. The only translation (other than multiples

of itself) with k.a/2?t not integral is the translation (1 1 ai). Thus we obtain a

group of 16 elements in 10 classes as shown in the upper line in Table 2; for

brevity the rotational elements are denoted simply by C2 , o, I, and the trans-

lation (1 1 ai) by «i. The fact that the elements C2
V and a xC2

v
, for example, are

conjugate (i.e. belong to the same class) may be seen as follows.* We have

(/|T)-Kcy |o)(/|t) = (i\-r)(c2y\o)(i\t)

= (l\-T)(C2Vl\C2
yT)

= (C2
v \-T+ C2yr).

But

C2
vt = i(-ai+a2-a3),

— t+ C2
vr = —ai— a3

= ai-(2ai+a3),

and, since translations through a3 and 2ai must be regarded as identical trans-

formations, we have

(/|r)-KC/|0)(/|ir) = (C/|a1).

Table 2

C2* C2
Z I ax ov a,

1 ax C2
X axC2

*

aiC2
v aid aj a\Ox a\Oy a\Oz

Ti 2 -2 2 -2

T2 2 -2-22000000
From the numbers of elements and classes in the group we find that it has

8 one-dimensional and 2 two-dimensional irreducible representations (8-l 2+

-f-2-2
2 = 16). All the one-dimensional representations are obtained from

representations of the point group D2h , the translation ax being assigned

the character %(ai) = 1. These representations, however, occur here as

"spurious" representations and must be rejected. They do not solve the

problem in question: their base functions are invariant under all translations,

whereas the functions e
ik ' r with given k are certainly not invariant with

respect to the translation a\. Thus there remain only two irreducible

t Two elements A and B are said to be conjugate if A = C'^BC, where C is another

element of the group.
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representations, whose characters are shown in Table 2.* The base functions

of these representations can be taken as

JTi : cos nx, sin nx,

r2 : cos nx cos 2ny, sin nx cos 2ny.

Let us also consider the representations corresponding to the star of two

vectors (i, 0, x), (£, 0, -x) with proper symmetry C2V (the axis C2 being along

the z-axis) ; x is an arbitrary number between and 1 (other than £). The ex-

tended group of k contains 8 elements in 5 classes (Table 3). (The dependence

of the base functions of the representations of this group on the co-ordinate

z reduces to a common factor e
wz or e~wz, which is invariant under all trans-

formations of the group ; it is therefore unnecessary to extend the group by

translations along the z-axis.) There are 4 one-dimensional and 1 two-dimen-

sional representation of this group.* The one-dimensional representations

must be rejected for the same reasons as previously, leaving only one repre-

sentation, whose characters are shown in Table 3. Its base functions can be

taken as

e±va cos nXf e±i*z sjn nx>

with the plus sign in the exponent for the vector (£, 0, x) and the minus sign

for the vector (J, 0, — x); the complete irreducible representation of the whole

space group is four-dimensional, and is given by all four of these functions

together.

Table 3

^2 "X uv
1 a±

axd a\Ox CllOy

2 -2

t This group is isomorphous with the "double" point group Dth'; see Quantum Mechan-
ics, §99.

t It is isomorphous with the "double" point group Dt
'.



CHAPTER XIV

PHASE TRANSITIONS OF THE SECOND KIND

§137. Phase transitions of the second kind

It has already been mentioned in §83 that the transition between phases of

different symmetry (crystal and liquid; different crystal modifications) cannot

occur in a continuous manner such as is possible for a liquid and a gas. In

every state the body has either one symmetry or the other, and therefore we

can always assign it to one ofthe two phases.

The transition between different crystal modifications is usually effected by

means of a phase transition in which there is a sudden rearrangement of the

Q
© © ©

• Ba ©0

Fig. 61

crystal lattice and the state of the body changes discontinuously. As well as

such discontinuous transitions, however, another type of transition involving

a change of symmetry is also possible.

To elucidate the nature of these transitions, let us consider a specific

example. At high temperatures, BaTiOa has a cubic lattice whose unit cell is

as shown in Fig. 61 (the barium atoms are at the vertices, the oxygen atoms at

the centres of the faces, and the titanium atoms at the centres of the cells). As

the temperature decreases below a certain value, the titanium and oxygen

atoms begin to move relative to the barium atoms parallel to an edge of the

cube. It is clear that, as soon as this movement begins, the symmetry of the

lattice is affected, and it becomes tetragonal instead of cubic.

This example is typical in that there is no discontinuous change in state of

the body. The configuration of atoms in the crystal changes continuously.

t To simplify the discussion, we shall conventionally speak of the configuration of the

424
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However, an arbitrarily small displacement of the atoms from their original

symmetrical positions is sufficient to change the symmetry of the lattice. The

resulting transition from one crystal modification to another is called a

phase transition of the second kind, in contrast to ordinary phase transitions,

which in this case are said to be of the first kind. 1
"

Thus a phase transition of the second kind is continuous in the sense that

the state of the body changes continuously. It should be emphasised, however,

that the symmetry, of course, changes discontinuously at the transition point,

and at any instant we can say to which of the two phases the body belongs.

But whereas at a phase transition point of the first kind bodies in two different

states are in equilibrium, the states of the two phases are the same at a tran-

sition point of the second kind.

As well as cases where the change in symmetry of the body occurs by a dis-

placement of the atoms (as in the example given above), the change in sym-

metry in a phase transition of the second kind may result from a change in

the ordering of the crystal. It has already been mentioned in §61 that the con-

cept of ordering arises if the number of lattice points that can be occupied by

atoms of a given kind exceeds the number of such atoms. We shall use the

word "own" for the places occupied by atoms of the kind in question in acom-

pletely ordered crystal, in contrast to the "other" places which are taken by

some of the atoms when the crystal becomes disordered. In many cases,

which will be of interest in connection with transitions of the second kind,

it is found that the "own" and "other" lattice sites are geometrically identical

and differ only in that they have different probabilities of containing atoms of

the kind in question.* If now these probabilities become equal (they will not

be unity, of course), all such sites become equivalent, and therefore new sym-

metry elements appear, i.e. the symmetry of the lattice is increased. Such a

crystal will be said to be disordered.

The foregoing may be illustrated by an example. The completely ordered

alloy CuZn has a cubic lattice with the zinc atoms at the vertices, say, and the

copper atoms at the centres of the cubic cells (Fig. 62a; a simple cubic Bra-

vais lattice). When the alloy is heated and becomes disordered, copper and

zinc atoms change places, i.e. non-zero probabilities of finding atoms of

either kind exist at every lattice site. Until the probabilities of finding copper

(or zinc) atoms at the vertices and at the centres of the cells become equal

atoms or its symmetry as if the atoms were at rest. In reality we should speak of the pro-

bability distribution for various configurations of the atoms in space, and of the symmetry

of this distribution.

t Phase transition points of the second kind are also called Curie points or A points.

t We may note that in this case it can always be assumed that the probability of finding

an atom at one of its "own" sites is greater than at one of the "other" sites simply because,

if it were not, we could transpose the nomenclature of the sites.
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(that is, while the crystal is ordered but not completely ordered), these sites

remain non-equivalent, and the symmetry of the lattice is unchanged. But

when the probabilities become equal, all sites become equivalent, and the

symmetry of the crystal is raised: a new lattice vector appears, from a vertex

to the centre of a cell, and the crystal acquires a body-centred cubic Bravais

lattice (Fig. 62b).

(a) <W

V~X

\ \
K
\J

OCu xZn

Fig. 62

For each state of ordering we can define a quantitative characteristic, the

degree ofordering % such that it is zero in a disordered phase, and takes vari-

ous positive or negative non-zero values in crystals with various degrees of

ordering. For instance, in the above example of the alloy CuZn, this quantity

may be defined as

n = (wCn-wZa)/(wCn+wZa),

where wc u and wZn are the probabilities of finding a copper atom and a zinc

atom respectively at any given lattice site.

It must again be emphasised that the symmetry of the crystal is changed

(namely, increased) only when v\ becomes exactly zero; any non-zero degree of

ordering, however small, brings about the same symmetry as that of a com-

pletely ordered crystal.

If, as the temperature is increased, the degree of ordering becomes zero

discontinuously from some finite value, the change from an ordered to a

disordered crystal will be a phase transition of the first kind, but if the degree

of ordering becomes zero continuously, we have a phase transition of the

second kind.*

t Cases are in principle possible where the occurrence of ordering does not cause a

change in the symmetry of the crystal. A phase transition of the second kind is then im-

possible: even if the transition from the ordered to the disordered state of the crystal were

to occur continuously, there would still be no discontinuity of specific heat (see below).

In such cases a phase transition of the first kind is, of course, possible.

The statement occurs in the literature that there is a relation between phase transitions

of the second kind and the appearance of rotating molecules (or radicals) in the crystal.

This view is incorrect, since at a transition point of the second kind the state of the body
must change continuously, and so there can be no sharp change in the nature of the motion.

If a phase transition which involves rotations of molecules in the crystal is considered, the
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So far we have discussed only transitions between different crystal modifi-

cations, but phase transitions of the second kind need not necessarily involve

a change in symmetry of the configuration of atoms in the lattice. A transition

of the second kind can also bring about a transformation between two phases

differing in some other property of symmetry, as for example at the Curie

points of ferromagnetic substances (the points at which they become para-

magnetic). In this case there is a change in symmetry of the arrangement of

the elementary magnetic moments in the body, or more precisely a dis-

appearance of the currents j in it; see the first footnote to §128. Other phase

transitions of the second kind are the transition of a metal to the super-

conducting state (in the absence of a magnetic field) and that of liquid helium

to the superfluid state. In both these cases the state of the body changes con-

tinuously, but it acquires a qualitatively new property at the transition point.

Since the states of the two phases are the same at a transition point of the

second kind, it is clear that the symmetry ofthe body at the transition point

itselfmust contain all the symmetry elements of both phases. It will be shown

below that the symmetry at the transition point itself is the same as the sym-

metry everywhere on one side of that point, i.e. the symmetry of one of the

phases. Thus the change in symmetry of the body in a phase transition of the

second kind has the following very important general property: the symmetry

of one phase is higher than that of the other. 1"

It should be emphasised that

in a phase transition of the first kind the change in symmetry of the body is

subject to no restriction, and the symmetries of the two phases may be unre-

lated.

In the great majority of the known instances of phase transitions of the

second kind, the more symmetrical phase corresponds to higher tempera-

tures and the less symmetrical one to lower temperatures. In particular, a

transition of the second kind from an ordered to a disordered state always

occurs with increasing temperature. This is not a law of thermodynamics,

however, and exceptions are therefore possible. t

The absence of any discontinuous change of state at a phase transition

point of the second kind has the result that the thermodynamic functions of

difference between the two phases must be that in the more symmetrical phase the proba-

bilities of different orientations of the molecules are equal, while in the less symmetrical

one they are different.

t It will be recalled that the term "higher symmetry" refers to a symmetry which includes

all the symmetry elements (rotations, reflections and translational periods) of the lower

symmetry, together with additional elements.

The condition mentioned is necessary but not sufficient for a phase transition of the

second kind to be possible ; we shall see later that the possible changes of symmetry in such

a transition are subject to further restrictions.

t One exception, for example, is the "lower Curie point" of Rochelle salt, below which

the crystal is orthorhombic, but above which it is monoclinic.
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the state of the body (its entropy, energy, volume, etc.) vary continuously as

the transition point is passed. Hence, in particular, a phase transition of the

second kind, unlike one of the first kind, is not accompanied by evolution or
absorption of heat. We shall see below, however, that the derivatives of these

thermodynamic quantities (i.e. the specific heat of the body, the thermal
expansion coefficient, the compressibility, etc.) are discontinuous at a transi-

tion point of the second kind.

We must expect that mathematically a phase transition point of the second
kind is a singularity of the thermodynamic quantities, and in particular of the
thermodynamic potential 0; the nature of this singularity is not yet known.
In order to see this, let us first recall that (see §83) a phase transition point

of the first kind is not a singularity; it is a point at which the thermodynamic
potentials X{P, T) and 2(P, T) of the two phases are equal, and each of the

functions X and 2 on either side of the transition point corresponds to an
equilibrium (though possibly metastable) state of the body. In a phase
transition of the second kind, however, the thermodynamic potential of each

phase, if formally regarded on the far side of the transition point, corresponds

to no equilibrium state, i.e. to no minimum of 0; we shall see in §138 that the

thermodynamic potential of the more symmetrical phase would indeed cor-

respond to a maximum of beyond the transition point.

This last result implies that superheating and supercooling effects are

impossible in phase transitions of the second kind (whereas they can occur in

ordinary phase transitions). In this case neither phase can exist beyond the

transition point (here we ignore, of course, the time needed to establish the

equilibrium distribution of atoms, which in solid crystals may be consider-

able).

PROBLEM
Let c be the concentration of atoms of one component of a binary solid solution, and

c the concentration of these atoms' "own" sites. If c ^ c the crystal cannot be completely
ordered. Assuming the difference c — c small and the crystal almost completely ordered,

determine the concentration X of atoms at "other" sites, expressing it in terms of the value
XQ which it would have at c = c for given P and T(C. Wagner and W. Schottky 1930).

Solution. Considering throughout only the atoms of one component, we use the con-
centration X of atoms at "other" sites and the concentration X' of their "own" sites not
occupied by these atoms; concentrations are defined with respect to the total number of
all atoms in the crystal. Clearly

c — cQ = A— A'. (1)

We shall regard the crystal as a "solution" of atoms at "other" sites and of "own"
sites not occupied by atoms, the "solvent" being represented by atoms at their "own"
sites. The transition of atoms from "other" to their "own" sites can then be regarded as a
"chemical reaction" between the "solutes" (with small concentrations X and X') to form
the "solvent" (with concentration as 1). Applying to this "reaction" the law of mass action,

we obtain XX' = K, where K depends only on P and T. For c = c we must have X = X'= X ;

hence K = X 2
, and so

XX' = X \ (2)
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From (1) and (2) we find the required concentrations:

A = i[(c- c )+ V{(c- c )
2+ 4V}],

;/ = }[_(c_ Co)+ V{(c-c )
2 +4A *}].

§138. The discontinuity of specific heat*

To give a mathematical description of a phase transition of the second kind,

we define a quantity rj which is to represent the extent to which the configura-

tion of the atoms in the less symmetrical phase differs from that in the more

symmetrical phase; in the latter phase r\ = 0, and in the less symmetrical

phase rj has positive or negative values. For example, in transitions which

involve a change in the ordering of the crystal, rj may be taken as the degree

of ordering; in transitions where there is a movement of the atoms (as in

BaTiCM), rj may be taken as the amount of displacement, and so on.

For brevity we shall arbitrarily call the more symmetrical phase simply the

symmetrical one, and the less symmetrical phase the unsymmetrical one.

Considering the thermodynamic quantities of the crystal for given devia-

tions from the symmetrical state (i.e. for given rj), we can represent the thermo-

dynamic potential as a function of P, T and r\. Here it must of course be

remembered that in the function &(P, T, rj) the variable rj is in one sense not

on the same footing as the variables P and T: whereas the pressure and tem-

perature can be specified arbitrarily, the value of r) which actually occurs

must itself be determined from the condition of thermal equilibrium, i.e. the

condition that & is a minimum (for given P and T).

The continuity of the change of state in a phase transition of the second

kind is expressed mathematically by the fact that the quantity rj takes arbi-

trarily small values near the transition point. Considering the neighbourhood

of this point, we expand 0(P, T, rj) in powers of rj

:

0(P, T, rj) = o+ <x.rj+ Ar)2+ Brj3+Cr,*+ ..., (138.1)

where the coefficients a, A, B, C, ... are functions ofP and T.

It must be emphasised, however, that the possibility of such an expansion

is by no means obvious a priori. Moreover, since, as already mentioned, a

transition point of the second kind must be a singularity of the thermodynamic

potential, there is every reason to suppose that such an expansion can not

be continued to terms of arbitrarily high order, and that the expansion coeffi-

cients can have singularities as functions of P and T. A complete elucidation

of the nature of the singularity of the thermodynamic potential at the

t The theory given in this and the following sections is due to L. D. Landau (1937).

t To avoid misunderstanding it may be noted that in the particular case of BaTi03

the displacement of the atoms has a small but finite discontinuity at the transition point,

and so the transition is in fact of the first kind.
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transition point offers great difficulties and has not yet been achieved.

Here we shall give a theory based on the assumption that the presence of the
singularity does not affect the terms of the expansion that are used. Until an
exhaustive theory is developed it is difficult to say which of the results thus

obtained may undergo modification, and to what extent.

It can be shown (see §139) that, if the states with rj = and r\ ^ are of

different symmetry (as we assume), the first-order term in the expansion

(138.1) is identically zero: a = 0. The coefficient A(P, T) in the second-order

term is easily seen to vanish at the transition point, since in the symmetrical

phase the value r\ = must correspond to a minimum of 0, and for this to

be so it is evident that A > is necessary, while on the other side of the

transition point, in the unsymmetrical phase, non-zero values of r\ must
correspond to the stable state (i.e. to the minimum of 0), and this is possible

Fig. 63

only if A < 0; Fig. 63 shows the form of the function 0{rj) for A < and
A > 0. Since A is positive on one side of the transition point and negative

on the other, it must vanish at the transition point itself:

AC{P, T) = 0, (138.2)

where the suffix c refers to the transition point.

But if the transition point itself is a stable state, i.e. if as a function of

rj is a minimum at r\ = 0, it is necessary that the third-order term should be

zero and the fourth-order term positive there

:

BC(P, T) = 0, CC(P, T) > 0. (138.3)

The coefficient C, being positive at the transition point, is of course also

positive in the neighbourhood of that point.

Two cases can occur. In one, the third-order term is identically zero owing

to the symmetry of the crystal: B(P, T) = 0. Then there remains at the transi-

tion point only the one condition A(P, T) = 0, which determines P as a
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function of T or vice versa. Thus in the PF-plane there is a line of phase

transition points of the second kind. 1
"

If, however, B is not identically zero, the transition points are determined

by the two equations A(P, T) = 0, B(P, T) = 0. In this case, therefore, the

continuous phase transitions occur only at isolated points.

The most interesting case is, of course, that where there is a line of

continuous-transition points. In what follows we shall take the discussion of

phase transitions of the second kind to refer only to this case, which will now

be considered.* That is, we shall suppose that B{P, T) = and the expansion

of the thermodynamic potential has the form

#(P, T, rj) = #oCP, T)+A(P, 7>2+ C(P, T)rf+ .... (138.4)

Here C > 0, while A > in the symmetrical phase and A < in the un-

symmetrical phase; the transition points are determined by the equation

A(P, T) = 0.

If we consider a transition at a given value of the pressure, then near the

transition point (the temperature of which is denoted by T£ we can write

A(T) = a(T-Tc), (138.5)

where a = [dA/dT]T^ Te
is a constant. The coefficient C(T) can be put simply

equal to a constant C(T^).

The dependence of r\ on the temperature near the transition point, in the

unsymmetrical phase, is determined from the condition for to be a mini-

mum as a function of r\. Equating the derivative d&/dr) to zero, we obtain

rj(A+2Cif) — 0, and hence

rf = -A/2C = a(Tc -T)/2C; (138.6)

the solution r\ = corresponds to the symmetrical phase."

Next, let us determine the entropy of the body near the transition point.

Neglecting higher powers of rj, we have from (138.4)

S = -d0/dT= S -@AldT)r)*,

where So = —d&o/dT; the term containing the temperature derivative of rj is

zero, because d&/dr) = 0. In the symmetrical phase rj = and S = So', in

t The condition that there is no term in rj3 in the expansion (138.1) is in fact necessary

but not sufficient for phase transitions of the second kind to be possible; see the sixth foot-

note to §139.

% It can be shown (L. Landau, Zhurnal iksperimentaVnoi i teoreticheskoi fiziki 7, 627,

1937; translation in Collected Papers ofL.D. Landau, p. 209, Pergamon, Oxford 1965)

that a phase transition of the second kind between a liquid and a solid (crystal) is always

impossible, since there is a third-order term in the expansion of the thermodynamic po-

tential.

II It should be noted that for A ~= the value rj — would correspond to a maximum
of<Z>.
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the unsymmetrical phase rf = —A/2C and

A ?^A a2
5 = s»+2C8r

= 5
»
+
2c

(r-^- <138 -7>

At the transition point itself this expression becomes So, and the entropy is

therefore continuous, as it should be.

Finally, let us determine the specific heats C
p
= T(dS/dT)p of the two

phases at the transition point. For the unsymmetrical phase we have, differ-

entiating (138.7),

Cp = Cpo+a*TJ2C. (138.8)

For the symmetrical phase S = S , and therefore C
p
= Cp0 . Thus we con-

clude that the specific heat is discontinuous at a phase transition point of the

second kind. Since C > 0, Cp > Cp0 at the transition point, i.e. the specific

heat is greater in the unsymmetrical phase than in the symmetrical one.

Other quantities besides C
p
are discontinuous : Cv , the thermal expansion

coefficient, the compressibility, etc. There is no difficulty in deriving relations

between the discontinuities of all these quantities. First of all we note that the

volume and the entropy are continuous at the transition point, i.e. their

discontinuities AV and AS are zero:

AV=0, AS = 0.

We differentiate these equations with respect to temperature along the curve

of transition points, i.e. assuming the pressure to be the function of

temperature given by this curve. The result is

A(dV/dT)P +(dP/dT)A(dV/dP)T = 0,

ACp/T-(dP/dT)A(dV/dT)P = 0,

since (dS/dP) T = —(dV/dT)p . These two equations relate the discontinuities

of the specific heat C
p , the thermal expansion coefficient and the compressi-

bility at a phase transition point of the second kind (W. H. Keesom, and
P. Ehrenfest, 1933).

Differentiating along the curve of transition points the equations AS =
and AP = (the pressure is, of course, unchanged in the transition), but with

temperature and volume as independent variables, we find

A(dP/dT)v + (dV/dT)A(dP/dV)T = 0,

ACJT+(dV/dT)A(dP/dT)v = 0.

From (138.9) and (138.10) we can express the discontinuities of C
p , Cv,

(dP/dT)v and (dVjdT)p in terms of that of (dV/dP)T :

A(dV/dT)P = -(dP/dT)A(dV/dP)T,

ACP = -T(dP/dT)*A(dV/dP)T , .

A(dP/dT)v = -(dV/dT)A[l/(dV/dP)T ],
* ' '

ACn = T(dVJdT)2A[lj(dV/dP)T ].
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We may note that, according to these formulae, the discontinuities of the

specific heat Cp and the compressibility —(3 V/dP) T have the same sign. Hence

it follows, from the previous statement about the discontinuity of the specific

heat, that the compressibility decreases discontinuously on going from the

unsymmetrical to the symmetrical phase.

The foregoing thermodynamic theory (with the reservation made at the

beginning of this section) answers the problem of the nature of the changes in

the thermodynamic quantities in a continuous transition between phases of

different symmetry. We see that the first derivatives of quantities such as

entropy and volume must be discontinuous in a transition of this type. 1
"

PROBLEM

Find the relation between the discontinuities of specific heat and heat of solution in a

transition of the second kind in a solution (I. M. Lifshitz 1950).

Solution. The heat of solution per molecule of solute is given by q = dW/dn-w ',

where W is the heat function of the solution and w f
the heat function per particle of the

pure solute. Since w ' is not affected by the phase transition in solution, we have for the

discontinuity of q

Aq = A(dW/dn) = A^(&-T^ = -TA(d2<P/dn 67),

where we have used the fact that the chemical potential fi' = 8<P/8« is continuous at the

transition. On the other hand, differentiation of the equation A(M>/dT) = (continuity of

entropy) along the curve of the transition temperature as a function of the concentration

c at constant pressure gives

dc dr- dNdT

Hence we have the required relation

N Aq = (dT /dc) ACP .

We may note that in the derivation of this relation no assumption has been made concern-

ing the concentration of the solution.

§139. Change in symmetry in a phase transition of the second kind

In the theory given in §138 we have considered a phase transition of the

second kind with some definite change in symmetry of the body, assuming a

priori that such a transition is possible. Such a theory, however, does not say

whether a given change of symmetry can in fact occur by a transition of the

second kind. The theory developed in the present section is designed to answer

this question; it starts from a different statement of the problem, whereby a

certain symmetry of the body at the transition point itself is specified, and we

ask what symmetry is possible on either side of this point.

t This renders pointless a discussion of transitions involving discontinuities only of

higher-order derivatives.
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For definiteness, we shall speak of phase transitions involving a change in

structure of the crystal lattice, i.e. a change in the symmetry of the configura-

tion of atoms in it. Let q(x, y, z) be the "density function" (defined in §128),

which gives the probability distribution of various positions of the atoms in

the crystal. The symmetry of the crystal lattice is the set or group of all

transformations of the co-ordinates under which the function q{x, y, z) is

invariant. Here we mean, of course, the complete symmetry of the lattice,

including rotations, reflections and also the infinite (discrete) set of all pos-

sible parallel displacements (translations); that is, we are concerned with one

of the 230 space groups.

Let Go be the symmetry group of the crystal at the transition point itself.

As we know from group theory, an arbitrary function q(x, y, z) can be rep-

resented as a linear combination of several functions #i, $2, • • • having the

property of being transformed into combinations of one another by all the

transformations in the group concerned. In general the number of these

functions is equal to the number of elements in the group, but when the

function q itself has a certain symmetry the functions
4
may be fewer in

number.

Bearing this in mind, we write the density function q(x, y, z) of the crystal

as the sum

Q = Z cdi*
i

where the functions ^ are transformed into combinations of one another by

all transformations in the group Go. The matrices of these transformations

form a representation of the group Go. The choice of the functions 4>{
is not

unique ; they can obviously be replaced by any linear combinations of them-

selves. The functions
(f>t

can always be so chosen as to form a number of

independent sets containing the minimum number of functions, the functions

in each set being transformed only into combinations of one another by all

transformations in the group Go. The matrices of the transformations of the

functions in each of these sets form irreducible representations of the group

Go, and the functions themselves are the basis of these representations. Thus

we can write

? = ZS^i(nWn)
, (139.1)

n i

n being the number of the irreducible representation and 1 the number of the

function in its basis. In what follows we shall assume the functions ^{

(n) to be

normalised in some definite manner.

The functions QW always include one which is invariant under all the

transformations in the group Go and gives what is called the unit representa-

tion of the group. Thus this function (which we denote by go) has the
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symmetry of Go. Denoting the remaining part of q by 8q, we can write

o = Qo+do, dp = £' X Ci<*W»>, (139.2)
n i

where now the unit representation is excluded from the summation (as

indicated by the prime to the summation sign). The function 5q has a lower sym-

metry than that of Go, since dg may also remain invariant under some trans-

formations in this group but certainly does not do so under all. We may note

that the symmetry G of the function q (which clearly is the symmetry of

bo) has, strictly speaking, been assumed from the start to be lower than that

of Go, since otherwise the sum (139.1) would include only one term, the

function q itself, which gives the unit representation.

Some of the irreducible representations of the space group may be complex

(i.e. the transformations of the group transform the base functions into linear

combinations of one another with complex coefficients). Each such represen-

tation is accompanied by its complex conjugate representation (given by the

complex conjugate functions). Since the physical density dp must be real

and must remain real under all transformations, it is clear that two complex

conjugate irreducible representations must be physically regarded as one rep-

resentation of twice the dimension (number of base functions). The density

6q must be a real linear combination of all these complex conjugate functions.

Throughout the following discussion we shall assume that this is so and that

the functions </>
i

(n) are taken to be real.*

The thermodynamic potential & of a crystal whose density function q is

given by (139.2) is a function of temperature, pressure and the coefficients

c
t

{n) (and depends, of course, on the specific form of the functions <£t
(n) them-

selves). The actual values of the c£n) as functions of P and T are determined

thermodynamically from the conditions of equilibrium, i.e. the conditions

for O to be a minimum. This determines also the symmetry G of the crystal,

since it is clear that the symmetry of the function (139.2), with functions ^>
i

(n)

whose laws of transformation are known, is determined by the values of the

coefficients in the linear combination of the 0/
n)

.

If the crystal is to have the symmetry Go at the transition point itself, it is

necessary that all the c/n) should be zero there, i.e. 6q = 0, q = Qo. Since

the change in state of the crystal in a phase transition of the second kind is

continuous, 8q must tend continuously to zero at the transition point, not

discontinuously, i.e. the coefficients c
t

(n) must tend to zero through arbitrarily

t The method of constructing irreducible representations of the space groups has been

discussed in §136. The remark just made shows that to obtain the "physically irreducible"

(real) representations we must include in the star of k the vector — k as well as each k.

In other words, in order to obtain the whole required star of k we must apply to some
initial k all the elements of the crystal class, together with a centre of symmetry if this is

not already present.
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small values near the transition point. Accordingly, we can expand the poten-

tial 0(P, T, c
t

(n)
) in powers of the c

t

m near the transition point.

First of all let us note that, since the functions (j)^
n) (belonging to the basis

of each irreducible representation) are transformed into combinations of one

another by the transformations in the group Go, these transformations can

be regarded as transforming (in the same manner) the coefficients q
(n)

instead

of the functions 0i
(n)

. Next, since the thermodynamic potential of the body

must obviously be independent of the choice of co-ordinates, it must be

invariant under any transformation of the co-ordinate system, and in partic-

ular under the transformations of the group Go. Thus the expansion of

in powers of the cf
n) can contain in each term only an invariant combination

of the c/n) that is of the appropriate power.

No linear invariant can be formed from quantities which are transformed

according to a (non-unit) irreducible representation of a group.* Only one

second-order invariant exists for each representation : a positive-definite form

in the c
{

(n)
, which can always be reduced to a sum of squares.

Thus the leading terms in the expansion of are of the form

= 00+Z'AW £ fo<n>]i
f (139.3)

n i

where the A{n) are functions of P and T.

At the transition point itself, the crystal must have the symmetry Go, i.e.

the equilibrium values of the c/n) must be zero. It is evident that can have

a minimum when every c^n) = only if all the A{n) are non-negative.

If all the A {n) were positive at the transition point, they would also be

positive near that point, so that the c
i

(n) would remain zero and there would

be no change of symmetry. For some c/n) to be non-zero, i.e. for the sym-

metry of the body to change, one of the coefficients /4
(n) must change sign,

and this coefficient must therefore vanish at the transition point. t (Two

t For otherwise that representation would contain the unit representation, i.e. would be

reducible.

% Strictly speaking, this condition should be more accurately stated as follows. The

coefficients A in) depend, of course, on the particular form of the functions </><
<B)

, being quad-

ratic functional of these which depend on P and T as parameters. On one side of the tran-

sition point, all these functionals A {n)
{4>+

n)
; P, T} are positive-definite. The transition point

is defined as that at which (as P or T varies gradually) one of the A ln) can vanish:

4(»>{(/>/»>; P, T) =* 0.

This vanishing corresponds to a definite set of functions </>/
n)

, which may in principle be

determined by solving the appropriate variational problem. These will also be the functions

0,
(n) which determine the change 5q at the transition point. Substituting these functions

in /4 ( *,)
}<£/'

,)
; P, T}, we obtain just the function A (n\P, T) which satisfies the condition of

vanishing at the transition point. The functions <f>,

lH
> may then be regarded as given, as will

be assumed below; the allowance for the variation of the 0/* withP and T would lead to

correction terms of higher order than those of interest here.
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coefficients Aw can vanish simultaneously only at an isolated point in the

PT-plane, which is the intersection of more than one line of transitions of the

second kind.)

Thus on one side of the transition point all the 4(n) > 0, and on the other

side one of the coefficients A™ is negative. Accordingly, all the c
t

(n) are always

zero on one side of the transition point, and on the other side non-zero c*n)

appear. We conclude, therefore, that on one side of the transition point the

crystal has the higher symmetry Go, which is retained at the transition point

itself, while on the other side of the transition point the symmetry is lower,

and so the group G is a sub-group of the group G .

The change in sign of one of the A<n) causes the appearance of non-zero

c (n) belonging to the «th representation. Thus the crystal with symmetry Go

becomes one with density q = Qo+dq, where

dQ = £ aWfaW (139.4)

i

is a linear combination of the base functions of any one of the irreducible rep-

resentations of the group Go (other than the unit representation). Accordingly

we shall henceforward omit the index n which gives the number of the rep-

resentation, meaning always the one which corresponds to the transition

considered.

We shall use the notation

rf = £ c?, ct
= rryi9 (139.5)

i

(so that£ y? = 1) and write the expansion of as

= &o(P, T)+r)*A(P, T)W I BJiP, T)f™(yd+
a

+^ICa(P,r)/a
<4>(yt)+..., (139.6)

a

where

/

<3)
,/

<4)
,
... are invariants of the third, fourth etc. orders formed from

the quantities y{
; in the sums over a there are as many terms as there are

independent invariants of the appropriate order which can be formed from

the yt
. In this expansion of the thermodynamic potential, the coefficient A

must Vanish at the transition point. In order that the transition point itself

should be a stable state (i.e. in order that should have a minimum at that

point when c
t
= 0), the third-order terms must vanish and the fourth-order

terms must be* positive-definite. As has been mentioned in §138, a line of phase

transitions of the second kind (in the PJ-plane) can exist only if the third-

order terms in the expansion of vanish identically. This condition may now

be formulated as requiring that it should be impossible to construct from the
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c
i
third-order invariants which are transformed according to the corresponding

irreducible representation of the group G^
Assuming this condition to be satisfied, we write the expansion as far as the

fourth-order terms in the form

= 0o+A(P, 7)^+7)* £ Ca(P, T)f«\7i). (139.7)
a

Since the second-order term does not involve the yt
, the latter are deter-

mined simply from the condition for a minimum ofthe fourth-order terms, i.e.

of the coefficient of rf in (139.7).* Denoting the minimum value of this

coefficient simply by C(P, T) (which must be positive, as shown above), we
return to the expansion of in the form (138.4), r\ being determined from the

condition that is a minimum regarded as a function of r\ alone, as in §138.

The values of the y{
thus found determine the symmetry of the function

&Q = V I Vi4>i, (139.8)
i

i.e. the symmetry G of the crystal which is formed in the transition of the

second kind from a crystal of symmetry Go."

The conditions derived above, however, are not yet sufficient to ensure

the possibility of a phase transition of the second kind. A further essential

condition is obtained if we consider a fact (hitherto deliberately ignored)

relating to the classification properties of representations of space groups.+

We have seen in §136 that these representations can be classified not only by
a discrete parameter (such as the number of the small representation) but also

by the parameter k, which takes a continuous series of values. The coefficients

A(n)
in the expansion (139.3) must therefore depend not only on the discrete

number n but also on the continuous variable k.

Let a phase transition correspond to the vanishing (as a function ofP and
T) of the coefficient ^4

(n)
(k) with a given number n and a given k = ko. In

t In the language of the theory of representations, this signifies that the symmetric cube
[r3

] of the representation J1
in question must not contain the unit representation.

t It may happen that there is only one fourth-order invariant, (£c<2
)
2 = rj*. In this case,

the fourth-order term is independent of the yit and higher-order terms must be used to
determine the y( .

II In §138 we have considered a transition with a given change of symmetry. Using the
concepts defined here, we can say that the quantities y{ were assumed to have given values
(so that the function do had a given symmetry). With the problem stated in these terms, the
absence of the third-order term (in the expansion (138.4)) could not be a sufficient condition
for the existence of a line of transition points of the second kind, since it does not exclude
the possibility that there are third-order terms in the general expansion with respect to
several c( (if the irreducible representation is not one-dimensional). For example, if there
are three c* and the product yiy2y3 is invariant, the expansion ofO contains a third-order
term, whereas this term will vanish if the function do has a certain symmetry which requires
that one or two yt should be zero.

+ The results and examples given below are due to E. M. Lifshttz (1941). Further
examples will be found in Zhurnal eksperimentaVnoi i teoreticheskoi fiziki 11, 255, 269,
1941 {Journal ofPhysics 6, 61, 251, 1942).



§!39 Change in Symmetry 439

order that the transition should actually occur, it is necessary that A™ as a

function of k should have a minimum for k = k (and therefore for all vec-

tors of the star of ko), i.e. the expansion ofA™<$ in powers of k-ko about ko

should contain no linear terms. Otherwise, some coefficients Aw(k) neces-

sarily vanish before A^(k ) and a transition of the type in question cannot

occur. A convenient formulation of this condition can be obtained on the

basis ofthe following arguments.

The value of ko determines the translational symmetry of the functions tfv

and therefore that of the function 8Q (139.8), i.e. it determines the periodicity

of the lattice of the new phase. This structure must be stable in comparison

with those which correspond to values of k close to k . But a structure with

k = ko+*(where*is small) differs from that withk= ko by a spatial "modu-

lation" in the periodicity of the latter, that is, by the appearance of non-uni-

formity over distances (~ 1/*) which are large compared with the periods (cell

dimensions) of the lattice. Such non-uniformity can be macroscopically de-

scribed by regarding the coefficients c, as slowly varying functions of the co-

ordinates (whereas the functions ^ oscillate over interatomic distances). Thus

we obtain the requirement that the state of the crystal should be stable with

respect to loss of macroscopic homogeneity.

When the quantities c
f
are not constant in space, the thermodynamic poten-

tial per unit volume of the crystal will depend not only on the c
t
but also on

their derivatives with respect to the co-ordinates (in the first approximation,

on the first derivatives). Accordingly (for unit volume) must be expanded in

powers of the c
4
and of their gradients vc, near the transition point. If the

thermodynamic potential (of the whole crystal) is to be a minimum for con-

stant C-, it is necessary that the first-order terms in the gradients in this expan-

sion should vanish identically. (The terms quadratic in the derivatives must

be positive-definite, but this imposes no restriction on the q, since such a

quadratic form exists for c
t
which are transformed by any of the irreducible

representations.)

Among the terms linear in the derivatives, the only ones that can be of inter-

est are those simply proportional to dcjdx, . .
. , and those containing the pro-

ducts Ci dcjdx, .... The higher-order terms are clearly of no importance. The

thermodynamic potential of the whole crystal, i.e. the integral $& dV over

the whole volume, is to be a minimum. The integration of all the total deri-

vatives in gives a constant which does not affect the determination of the

minimum of the integral. We can therefore omit all terms in which are

simply proportional to derivatives of the c,. Among the terms containing

products cficjdx,. . . we can omit all symmetrical combinations ckdcjdx+

cficjdx = dicf^/dx, . . ., leaving the antisymmetrical parts

r
8c*_..?£* (139.9)

Ch
*x~

Cl
ax'

•'
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The expansion of can contain only invariant linear combinations of the

quantities (139.9). Hence the condition for a phase transition to be possible

is that such invariants do not appear.

The components of the gradients v c
t
are transformed as the products of

the components of a vector and the quantities c
t

. The differences (139.9) are

therefore transformed as the products of the components of a vector and the

antisymmetrised products of the quantities c
f

. Consequently the requirement
that no linear scalar can be formed from the quantities (139.9) is equivalent

to the requirement that no combinations which transform as the components
of a vector can be formed from the antisymmetrised products

Xik = tM-Mi; (139.10)

here the
<f)i

and 4>\ are the same base functions of the relevant irreducible

representation, which we regard as taken at two different points x, y, z and
x', y', z' in order that the difference shall not be identically zero. 1" Labelling

the base functions by the two suffixes ka (as in §136), we write the difference

(139.10) in the form

Zka.k'/? = <h*4>Vft-4>**'fai'ih (139.11)

where k, k', . . . are vectors of the same star.

Let the vector k occupy the most general position and have no proper sym-
metry. The star of k contains n vectors according to the number of rotational

elements in the group (or In if the space group itself does not include inver-

sion), each k being accompanied by the different vector -k. The correspond-
ing irreducible representation is given by the same number of functions

k (one for each k, and so we omit the suffix a). The quantities

Zk,-k = <M>lk-0k0-k (139.12)

are invariant under translations. Under the rotational elements, these n (or

2ri) quantities are transformed into combinations of one another, giving a
representation of the corresponding point group (crystal class) with dimension
equal to the order of the group. But this representation (called a regular rep-

resentation) contains all the irreducible representations of the group, includ-

ing those by which the components of a vector are transformed.

Similar considerations show that it is possible to form a vector from the

quantities %ka _kp in cases where the group of the vector k contains one axis

and planes of symmetry passing through that axis.

This discussion becomes inapplicable, however, if the group of the vector k
contains axes which intersect one another or intersect planes of symmetry, or

t In the language of the theory of representations, we can say that the antisymmetric
square {T2

} of the representation r in question must not contain the irreducible representa-
tions by which the components of a vector are transformed.
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contains inversion; such groups will be said to have a central point. In such

cases the question of constructing a vector from the quantities (139.11)

requires separate treatment in each particular case. In particular, such a vec-

tor certainly can not be constructed if the group of k contains inversion, so

that k and — kare equivalent, and only one function </>k corresponds to each k

in the star ; in this case there are no %kk , invariant under translations (as the

components of a vector must necessarily be).

Thus the requirement formulated above greatly restricts the possible changes

ofsymmetry in a phase transition ofthe second kind. Of the infinity of different

irreducible representations of the group 6r , we need consider only a compara-

tively small number for which the group of the vector k has a central point.

A proper symmetry of this kind can, of course, occur only for vectors

k/2rc which occupy certain exceptional positions in the reciprocal lattice, their

components being equal to certain simple fractions (-£, £, i) of the basic vec-

tors of that lattice. This means that the change in the translational symmetry

of the crystal (i.e. in its Bravais lattice) in a phase transition of the second kind

must consist in an increase by a small factor in some of the basic lattice vectors.

Investigation shows that in the majority of cases the only possible change

in the Bravais lattice is a doubling of the lattice vectors. In addition, in body-

centred orthorhombic, tetragonal and cubic and face-centred cubic lattices

some lattice vectors can be quadrupled, and in a hexagonal lattice tripled.

The volume of the unit cell can be increased by a factor of 2, 4 or 8, in a face-

centred cubic lattice also by 16 or 32, and in a hexagonal lattice by 3 or 6.
f

Transitions are, of course, also possible without change of Bravais lattice

(corresponding to irreducible representations with k = 0). The change in

symmetry then consists in a decrease in the number of rotational elements,

i.e. a change in the crystal class. t

We may note the following general theorem. A phase transition of the

second kind can occur for any change in structure which halves the number of

symmetry transformations; such a change may occur either by a doubling of

the unit cell for a given crystal class or by a halving of the number of rotations

t It has been pointed out by I. E. Dzyaloshinsku that a very unusual situation can

arise for transitions which involve a change in magnetic structure. Here there may be

physical reasons why the coefficient, in the expansion of 0, of the invariant (if any exists)

formed from the quantities (139.9) should be anomalously small. This means that a phase

transition is possible but does not lead to a state described by a vector k (satisfying the

conditions imposed above); instead, it leads to a state with vector k +x, where the small

quantity x is determined by the relative magnitude of the terms in the expansion of <J>

which are of the first and second order in the derivatives. The resulting structure does not

differ from that corresponding to the vector k on the small scale (of the order of atomic

distances); that is, it corresponds to change in the lattice vectors by a small factor. On this

structure is superposed a "hyperstructure" consisting of "beats" in the basic structure with

a period (~ 1/x) much greater than interatomic distances.

% Such cases can actually occur; see V. L. Indenbom, Soviet Physics Crystallography 5,

106, 1960.
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and reflections for a given unit cell. The proof is based on the fact that, if

the group 6r has a sub-group G of half the order, then the irreducible rep-

resentations of Gro always include a one-dimensional representation given by

a function which is invariant under all transformations of the sub-group G
and changes sign under all the remaining transformations of the group G .

It is clear that in this case there are no odd-order invariants, and no quanti-

ties of the type (139.1 1) can be formed from one function.

The following theorem also appears to be valid. Phase transitions of the

second kind cannot occur for changes in structure which reduce to one-third

the number of symmetry transformations, owing to the presence of third-

order terms in the expansion of0.

Finally, to illustrate the practical applications of the general theory given

above, let us consider the occurrence of ordering in alloys which, in the disord-

ered state, have a body-centred cubic lattice with atoms at the vertices and

centres of cubic cells, as in Fig. 62b (§137).
f The problem is to determine

the possible types of ordering (called superlattices in crystallography) which

can appear in such a lattice in a phase transition of the second kind.

For a body-centred cubic lattice, the reciprocal lattice is face-centred cubic.

If the edge of the body-centred cubic lattice cell is taken as the unit of length,

the edge length of the cubic cell in the reciprocal lattice is \, and in this lattice

the following vectors k/2n: have intrinsic symmetry groups with a central

point:

(a) (000) Oh

(b) (Hi) ___ °"

«o (Ht)> (Hi) T
* \ <139 - 13>

(d) (<>tt)> (t°t)» (HO).

(<>tt)> (t°t). (tt°) d*

These symbols show the components of the vectors k/2n along the edges of

the cubic cell (x, y, z axes) as fractions of the edge lengths; a bar over a

quantity indicates a negative value. In order to obtain the vectors k in the

units specified above, these numbers must be multiplied by 2-2jz = 4n. In

(139.13) only non-equivalent vectors are shown, i.e. the vectors of each star.

The subsequent discussion is greatly simplified by the fact that not all small

representations need be considered in solving the problem in question. The

reason is that we are concerned only with the possible changes of symmetry

that can occur by the formation of a superlattice, that is, by an ordered arran-

gement of atoms at existing lattice sites without relative displacement. In this

case the unit cell of the disordered lattice contains only one atom. Hence the

t Such a lattice belongs to the space group Oh
9

; it has no screw axes or glide planes.



§139 Change in Symmetry 443

appearance of the superlattice can only mean that the lattice points in differ-

ent cells become non-equivalent. The change do in the density distribution

function must therefore be invariant under all rotational transformations of

the group of k (without simultaneous translation). Thus only the unit small

representation is admissible, and accordingly wa may be replaced by unity in

the base functions (136.2).

Let us now consider in turn the stars listed in (139.13).

(a) The function with k = has complete translational invariance, i.e. in

this case the unit cell is unchanged, and since each cell contains only one atom

no change of symmetry can occur.

(b) The function e
2ni{x+y+z) corresponds to this k. The linear combination

(of this function and the functions obtained from it by all rotations and reflec-

tions) which has the symmetryOh of the group ofk is

(f>
= cos 2nx cos 2ny cos 2fcz» (139.14)

The symmetry of the phase formed is that of the density function q = qo+6q,

do = rj(f).
* The function $ is invariant under all transformations of the class

Oh and under translations along any edge of the cubic cell, but not under a

translation through half the space diagonal, (y \ -§-)• Hence the ordered phase

has a simple cubic Bravais lattice with two non-equivalent points in the unit

cell, (000) and (y|--§-); these will be occupied by different atoms. The alloys

which can be completely ordered in this way have the composition AB (e.g.

the alloy CuZn mentioned in §137).

(c) The functions corresponding to these k which have the symmetryTd are

4>i = cos nx cos ny cos nz, . ,Q t
„

<^>2 = sin nx sin ny sin nz.

Fromthesewe canformtwo fourth-order invariants : (0X
2+ <j>2

2
)
2 and (^>1

i+ <J>2
1
).

The expansion of (139.7) therefore has the form

= o+Arf+C1rf+dri\y^+y^). (139.16)

Here two cases must be distinguished. Let C2 < 0; then as a function of yi

and y2 , with the added condition yf+y£ = 1, has a minimum for yx = 1,

y2 = 0.$ The function do = rjcf)! has the symmetry of the class Oh with a face-

centred Bravais lattice, whose cubic cell has a volume 8 times that of the orig-

inal cubic lattice cell. The unit cell contains 4 atoms; the cubic cell, 16 atoms.

By placing like atoms at equivalent lattice sites we find that this superlattice

t This does not mean, of course, that the change 6q in an actual crystal is given by the

function (139.14). Only the symmetry of the expression (139.14) is important.

t Or for y i = 0, y2 = 1 • But the function 5q — rj<p 2 has the same symmetry as rj4>x, differ-

ing from it only in that the origin is shifted by one lattice vector.
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corresponds to a ternary alloy of composition ABC2 with atoms in the follow-

ing positions:

& cyclic,

& cyclic,

(Iff) & cyclic, (| if) & cyclic;

here the co-ordinates of the atoms are given in units of the edge length of the

new cubic lattice cell, which is twice that of the original cell (see Fig. 64a)

;

**& cyclic" denotes cyclic interchange. If the B and C atoms are identical we
obtain an ordered lattice of composition AB 3 .

4A (000),

4B (tit).

8C (iffX

(Oil)

(0 I)

\a i a)>

!t.--

\W

O A

• B

O C

(a) <b)

Fig. 64

Now let C2 = 0. Then has a minimum at y* = y2
2 = £, so that do =

ni4>i+<t>2)IV2 (or r)((f) 1 -(j)2)/V2, which leads to the same result). This func-

tion has the symmetry of the class Oh with the same face-centred Bravais

lattice as in the preceding case but only two sets of equivalent points, which
can be occupied by atoms of two kinds A and B

:

8A (000), (||i), (Iff) & cyclic, (0 1 1) & cyclic

8B(Ki), (fff), (||f) & cyclic, (0 1) & cyclic

(see Fig. 64b).t

(d) The following functions with the required symmetry D2h correspond

to these vectors k

:

X = cosn(y— z), (f) S = cosn(x—y), cf>5
= cos n(x—z),

(f>2 = cos7i(y+z), (j>4
= cos7i(x+y),

6
= cosn(x+z).

From these we can form one third-order invariant and four fourth-order

invariants, and so the expansion (139.6) becomes

= ^0+ Arj2+ Br}3(y1y3y5+ y2y3y6+ yiyiyi+ y2yAy5) +

+ C1r)*+C2rJXyJ

i+ y2*+ y3*+ yA*+ y5
i+ y(

.*)+
+ C*rf(y*y* + y*y? + y

2
y^) +

+ Cirfiy\yiyzjA+ yzy^y^ + vlwre)-

t The structures in Figs. 64a and b belong to space groups Oa
5 and Oa

7
. The former is

the structure of the Heusler alloys.
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Because cubic terms are present, a phase transition of the second kind is

impossible iff this case. To examine whether isolated points of continuous

transition can exist and the properties of such points (see §140) it would be

necessary to investigate the behaviour of the function O near its minimum;

we shall not pause to do so here.

The above example shows what rigid limitations are imposed by the thermo-

dynamic theory on the possibility of phase transitions of the second kind; for

example, in this case they can exist only when superlattices of three types are

formed.

The following fact may also be pointed out. In case (c), when C2 < 0, the

actual change in the density function, bo = i#i, corresponds to only one of

the two parameters ylt y2 which appear in the thermodynamic potential

(139.16). This illustrates an important feature of the foregoing theory: in

considering a particular change in the lattice in a phase transition of the

second kind, it may be necessary to take account of other, "virtually possible",

changes.

§140. Isolated and critical points of continuous transition

The curve of phase transitions of the second kind in the PT-plane separates

phases of different symmetry, and cannot, of course, simply terminate at some

point, but it may pass into a curve of phase transitions of the first kind.

A point at which this happens may be called a critical point of a transition of

the second kind; it is in some ways analogous to an ordinary critical point.

The nature of the temperature dependence of the thermodynamic quantities

near the critical point can, in principle, be investigated by the method given

in §138, but this problem is even more subject to the remark made in §138

that the results thus obtained are of uncertain validity. We shall therefore not

give the corresponding investigation in detail here, but simply describe briefly

the results.

In the expansion (138.4) the critical point is given by the vanishing of the

two coefficients A(P, T) and C{P, T); if A = but C > we have a transition

of the second kind, and so the curve of such transitions terminates only where

C changes sign. Thus, to examine the neighbourhood of the critical point, we

must discuss the expansion of the thermodynamic potential as far as the

sixth-order terms. It can be shown that the curve of phase transitions of the

second kind passes smoothly into the curve of transitions of the first kind,

i.e. the derivative dT/dP does not have a discontinuity on the curve, although

the second derivative d2r/dP2 does. At the critical point, the specific heat

C of the less symmetrical phase becomes infinite inversely as the square root

of the distance from the critical point.

Finally, it remains to consider the case where the third-order terms in the
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expansion of the thermodynamic potential do not vanish identically. In this

case the condition for the existence of a point of continuous pMtse transition
requires that the coefficients Ba{P, T) of the third-order invariants in the
expansion (139.6) should vanish, as well as A(P, T). It is evident that this is

possible only if there is not more than one third-order invariant, since other-
wise we should obtain more than two equations for the two unknowns P
and r.f When there is only one third-order invariant, the two equations
A(P, T) = 0, B(P, T) = determine pairs of values ofP and T, i.e. there are
isolated points of continuous phase transition.

Since these points are isolated, they must lie in a certain way at the inter-

section of curves (in the PT-plane) of phase transitions of the first kind. Since
such isolated points of continuous transition have not yet been observed
experimentally, we shall not pause to give a detailed discussion here, but
simply mention the results. t

Fig. 65

The simplest type is that shown in Fig. 65a. Phase I has the higher sym-
metry, and phases II and III the same lower symmetry, these two phases
differing only in the sign of r\. At the point of continuous transition (O in

Fig. 65) all three phases become identical.

In more complex cases two or more curves of phase transition of the first

kind (e.g. two in Fig. 65b) touch at the point of continuous transition. Phase I

has the highest symmetry, phases II and m a lower symmetry, phases IV
and V another lower symmetry, these pairs of phases differing only in the

sign of 7y.ll

t It is apparently true (though we have not obtained a general proof) that there can
never be more than one third-order invariant for the representations of the space groups.

t See L. Landau, Zhurnal eksperimentaVnoi i teoreticheskoifiziki 7, 19, 1937 ; translation
in Collected Papers ofL. D. Landau, p. 193, Pergamon, Oxford 1965.

1
1
There is reason to suppose that even isolated points of continuous phase transition are

impossible for transitions between a liquid and a solid crystal.
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§141. Phase transitions of the second kind in a two-dimensional lattice

Considerable theoretical interest attaches to the examination of phase

transitions of the second kind in two-dimensional systems also. 1" Although no

general analysis of this problem has been made, it is likely that the general

nature of the singularity of the thermodynamic quantities at the transition

point will appear from the solution of the transition problem in a simple

particular model of a two-dimensional lattice ; such a problem was first solved

by L. Onsager (1944).* This topic is the more interesting in that no similar

problem has yet been solved for the three-dimensional case.

The model considered is a plane square lattice having N points, at each of

which is a "dipole" with its axis perpendicular to the lattice plane. The dipole

can have two opposite orientations, so that the total number of possible

configurations of the dipoles in the lattice is 2^. To describe the various

configurations we proceed as follows. To each lattice point (with integral

co-ordinates k, /) we assign a variable ahl which takes two values ± 1, corre-

sponding to the two possible orientations of the dipole. If we take into account

only the interaction between adjoining dipoles, the energy of the configura-

tion may be written
L

E(o) = -/ £ fauffM+i+tfM^fc+i.i). (14L1 )

ft, i=i

where L is the number of points in a lattice line, the lattice being regarded as

a large square, and N = Z,2 .
11 The parameter J (> 0) determines the energy of

interaction of a pair of adjoining dipoles, which is — J and + / for like and

unlike orientations of the two dipoles respectively. Then the configuration

with the least energy is the "completely polarised" (ordered) configuration,

in which all the dipoles are oriented in the same direction. This configuration

is reached at absolute zero; as the temperature increases, the degree of

ordering decreases, becoming zero at the transition point, when the two

orientations of each dipole become equally probable.

The determination of the thermodynamic quantities requires the calcula-

tion of the partition function

Z = Ze-E(°)IT = £ eXp{0 £ (<rw*M+1 +<rWfffc+liI)}, (141.2)
(•) <») ft. i

t In addition to its purely theoretical interest, this problem is closely related to that of

the behaviour of crystals with a markedly stratified structure and of adsorbed films (cf.

§147).

$ The original method used by Onsager was extremely complex. Later, various authors

simplified the solution. The method described below (which in part makes use of certain

ideas in the method of Kac and Ward (1952)) is due to N. V. Vdovichenko.

II The number L is, of course, assumed macroscopically large, and edge effects (due to

the special properties of points near the edges of the lattice) will be neglected throughout

the following discussion.
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taken over all the 2N possible configurations (0 = JIT). The equation

exp (dokloh >v) = cosh Q+<yklok >v sinh d = cosh d(\ + ohlok >v tanh 0)

is easily verified by expanding both sides in powers of and using the fact

that all the a\
x
= 1. The expression (141.2) can therefore be written

Z = (l-x2)~NS, (141.3)

where L
S = H ft (l+x°ki0k,i+i)(l+xaklo-k+hl) (141.4)

and x = tanh 0.

The summand in (141.4) is a polynomial in the variables x and a
kl

. Since

each point (k, 1) has four neighbours, each a
hl
can appear in the polynomial

in powers from zero to four. After summation over all the o
hl
= ±1 the

terms containing odd powers of ahl vanish, and so a non-zero contribution

comes only from terms containing ahl in powers 0, 2 or 4. Since o°
kl
= a\

t
=

o\i = 1, each term of the polynomial which contains all the variables a
kl

in even powers gives a contribution to the sum which is proportional to the

total number of configurations, 2^.

(a) (b) (c)

kl k+l,L kL k+l,L kL k*l,L

* * t • • • t | • • • • t « •

k-I.L-l k,L-l k-2,L-l k-l,L-l I

• • • • • f
' ' * • • t 1 * * •

•

k,l-l

k+l, -1

»

k+/,L-l k+i,l-\
k-ZX-2

• • • i i >

k-l,L-2 /(,L-2

k,L-l k*l,L-l

k-l,L-2

k-2,L-3 k-l,L-3

Fig. 66

Each term of the polynomial can be uniquely correlated with a set of lines

or "bonds" joining various pairs of adjoining lattice points. For example, the

diagrams shown in Fig. 66 correspond to the terms

(a) Jftrw0j[ +li i<rk+li ,_1 ,

(b) *Mi<xl +1 ,
i<x£ +l) !_!< ,_,oj[

t l_2cr|_1> ^ol.!, i_2 ,

(c) *10
oj|ierj[ +1 , ial+1> x_xal t

i^of-g, i-i^l-i, i_i X

X^ft-l, I—

2

crA—1, l-S^ft-a, I-3°fc-2, 1-2 •

Each line in the diagram is assigned a factor x and each end of each line a

factor a
hl .

The fact that a non-zero contribution to the partition function comes only

from terms in the polynomial which contain all the ahl in even powers signifies
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geometrically that either 2 or 4 bonds must end at each point in the diagram.

Hence the summation is taken only over closed diagrams, which may be self-

intersecting (as at the point k, I- 1 in Fig. 66b).

Thus the sum S may be expressed in the form

S = 2NZxr
gr ,

(141.5)

r

where gr is the number of closed diagrams formed from an (even) number r

of bonds, each multiple diagram (e.g. Fig. 66c) being counted as one.

The subsequent calculation is in two stages: (1) the sum over diagrams of

this type is converted into one over all possible closed loops, (2) the resulting

sum is calculated by reducing it to the problem of the "random walk" of a

point in the lattice.

We shall regard each diagram as consisting of one or more closed loops.

For non-self-intersecting diagrams this is obvious; for example, the diagram

in Fig. 66c consists of two loops For self-intersecting diagrams, however, the

resolution into loops is not unique: a given diagram may consist of different

numbers of loops for different ways of construction. This is illustrated by

Fig. 67, which shows three ways of representing the diagram in Rig. 66b as

one or two non-self-intersecting loops or as one self-intersecting loop. Any

intersection may similarly be traversed in three ways on more complicated

diagrams.

It is easy to see that the sum (141.5) can be extended to all possible sets

of loops if, in computing the number of diagrams gr ,
each diagram is taken

with the sign (-l)n , where n is the total number of self-intersections in the

loops of a given set, since when this is done all the extra terms in the sum

rPna cP
Fig. 67

necessarily cancel. For example, the three diagrams in Fig. 67 have signs

+ ) +j _ respectively, so that two of them cancel, leaving a single contribu-

tion to the sum, as they should. The new sum will also include diagrams with

"repeated bonds", of which the simplest example is shown in Fig. 68a. These

diagrams are not permissible, since some points have an odd number of bonds

meeting at them, namely three, but in fact they cancel from the sum, as they

should: when the loops corresponding to such a diagram are constructed,

each bond in common can be traversed in two ways, without intersection (as

in Fig. 68b) and with self-intersection (Fig. 68c); the resulting sets of loops
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appear in the sum with opposite signs, and so cancel. We can also avoid the

need to take into account explicitly the number of intersections by using the

geometrical result that the total angle of rotation of the tangent in going

round a closed plane loop is 2tt(/+ 1), where / is a (positive or negative)

integer whose parity is the same as that of the number v of self-intersections

of the loop. H-\ice, if we assign a factor ew 'to each point of the loop (with

the angle of rotation there <j> = 0, ±%n), the product of these factors after

going round the whole loop will be (— l)
v+1

, and for a set of s loops the

resultant factor is (— l)
n+s

, where n = £v.

Thus the number of intersections need not be considered if each point on
the loop is taken with a factor^*** and a further factor (- l)

s
is taken for the

whole diagram (set of loops) in order to cancel the same factor in (— l)
n+s

.

Let fr denote the sum over all single loops of length r (i.e. consisting of

r bonds), each loop having a factor e^ at each point on it. Then the sum
over all pairs of loops with total number of bonds r is

* ri+rt=*r

the factor 1/2! takes into account the fact that the same pair of loops is

obtained when the suffixes r\ and r% are interchanged, and similarly for groups

of three or more loops. Thus the sum S becomes

s=0 ' rlt r =1

Since S includes sets of loops with every total length ri+r2+ • • •, the numbers

ri, r2 , . . . in the inner sum take independently all values from 1 to <=°.f Hence

Z **+ -" +r
*A.../r. = (f*r

/r)
a

ri, . . . ,r, r-

1

and S becomes

S = exp (-£ tffr). (141.6)
r=l

This completes the first stage of the calculation.

t Loops with more than iV points make no contribution to the sum, since they must
necessarily contain repeated bonds.
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It is now convenient to assign to each lattice point the four possible direc-

tions from it and to number them by a quantity v = 1, 2, 3, 4, say as follows

:

2

t

3---1
I

4

We define as an auxiliary quantity Wr
(k, /, v) the sum over all possible

paths of length r from some given point ko, /o, v to a point k, /, v (each bond

having as usual the factor e*
1
*, where is the change of direction to the next

bond) ; the final step to the point k, I, v must not be from the point to which

the arrow v is directed.
1-

With this definition, Wr(k , l , v ) is the sum over

all loops leaving the point ko, /o in the direction v and returning to that point.

It is evident that

fr-^l £ Wr(k ,lo, Vo):
2>*

ft , fo, "0

(141.7)

(141.8)

both sides contain the sum over all single loops, but £Wr contains each loop

2r times, since it can be traversed in two opposite directions and can be

assigned to each of r starting points on it.

From the definition of W
r
(k, I, v) we have the recurrence relations

Wr+l(k, I, 1) = Wr(k-\, /, \)+e-»"Wr(k, /-l, 2)+
+Q+e*n Wr(k, 7+1,4),

Wr+1(k, I, 2) = e*"Wr(k- 1, /, 1)+ Wr(k, I- 1, 2)+
+ e-*i»Wr(k+l,I, 3)+0,

*fr+i(fc, U) = 0+e»"Wr(k, /-l, 2)+
+ Wr(k+l, /, 3)+e-H"Wr(k, /+1, 4),

Wr+1(k, /, 4) = e-»»Wr(k-l, I, l)+0+

+eH"Wr(k+ 1, /, 3)+ Wr(k, /+ 1, 4).

The method of constructing these relations is evident : for example, the point

k, /, 1 can be reached by taking the last (r+ l)th step from the left, from below
or from above, but not from the right; the coefficients of Wr arise from the

factors e*1*.

Let A denote the matrix of the coefficients in equations (141.8) (with all

k, I), written in the form

W^KU v)= X A{klv\k'rv')WT{k\l\v').
h',l',v'

t In fact Wr(k, I, v) depends, of course, only on the differences k-k , /-/,v
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The method of constructing these equations enables us to associate with this

matrix an intuitive picture of a point moving step by step through the lattice

with a "transition probability" per step from one point to another which is

equal to the corresponding element of the matrix A; its elements are in fact

zero except when either k or / changes by ± 1 and the other remains constant,

i.e. the point traverses only one bond per step. It is evident that the "proba-

bility" of traversing a length r will be given by the matrix Ar
. In particular,

the diagonal elements of this matrix give the "probability" that the point

will return to its original position after traversing a loop of length r, i.e. they

are equal to Wr
(k , /o, v ). Hence

tr AT = £ Wr(k , A>, vo).

ho, lo, vo

Comparison with (141.7) shows that

where the X
t
are the eigenvalues of the matrix A. Substituting this expression

in (141.6) and interchanging the order of summation over i and r, we obtain

S = exp{-i£ I-*rV}
i r=l

'

^= exp {££ log(l-xAi)}
i

= ZZV(l-*Ai).- (141.9)

The matrix A is easily diagonalised with respect to the suffixes k and / by

using a Fourier transformation

:

Wr(p, q,v)= J e-2*i(pfc+30/i
r̂(fc, /, v).

h,l=0

(141.10)

Taking Fourier components on both sides of equations (141.8), we find that

each equation contains only Wr(p, q, v) with the same/?, q, so that the matrix

A is diagonal with respect to p and q. For given p, q its elements are

A(pqv \pqv') =

e~P a 1e"-q. aeq

<x.e~p e~« a_1eP

ae~^ £p a_1e«

oc-^-p aep e«

where a =. e
lf'in

, e - e2
"ifL

.
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For given p, q a simple calculation of the determinant shows that

f[ (1-xA,) = det(d vv,-xAvv>)

i= l

= (1 + x2
)
2 -2x(l -x2

) /cos -^ +cos
-jf\

.

Hence, from (141.3) and (141.9), we finally obtain the partition function

Z = 2"(l-x2)-N fl ja+*2
)
2-

-2x(l-x*)(cos^+cos^T
/2

. (141.11)

The thermodynamic potential is
1-

= -riogz
= -Arriog2+Arriog(l-x2)-

-\T £ log[(l + ;c
2
)
2-2x(l-x2)(cos^+cos-^]

P. 9=0 L \ ' -•

or, changing from summation to integration,

= -#:riog2+Arriog(i-x2)-

_ NT
f f log [(1 + x2

)
2 -2jc(1 -x2

) (cos coi+cos a)2)]da>ida) 2 (141.12)
2(2rr)2

J J
o o

(remembering that x = tanh {JIT)).

Let us now examine this expression. The function 0{T) has a singularity

at the value of x for which the argument of the logarithm in the integrand can

vanish. As a function of g>i and co2 , this argument is a minimum for cos coi =

cos o)2
= 1, when it equals (l + x2)

2 -4x(l-x2
) = (x2+2x-l)2

. This ex-

pression has a minimum value of zero for only one (positive) value of x,

xc
= -y/2-1; the corresponding temperature Tc

(tanh (J/T
c)
= x^ is the

phase transition point.

The expansion of 0(T) in powers of t-T-Tc
near the transition point

includes a singular term as well as the regular part. Here we are interested

only in the singular term, the regular part being simply replaced by its value

at t = 0. To find the form of the singular term, we expand the argument of

the logarithm in (141.12) in powers of co 1} w2 and t about the minimum; the

t In the model under discussion the temperature affects only the ordering of dipole

orientations, not the distances between dipoles (the "thermal expansion coefficient" of the

lattice is zero). It is then immaterial whether we consider the free energy or the thermody-

namic potential.
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integral then becomes

In In

log[cit
2+c2(col+col)]do) 1dcD 2 ,

where c x and c2 are constants. Carrying out the integration, we find that the

thermodynamic potential near the transition point has the form

** a-±b(T-Tc)* log \T-TC \, (141.13)

where a and b are further constants (with b > 0). The potential itself is

continuous at the transition point, but the specific heat becomes infinite in

accordance with the formula

C- b log \T-TC \, (141.14)

which is symmetrical about the transition point.

In an actual two-dimensional structure we must expect singularities of the

same type in the thermodynamic quantities, the coefficients a, b and the tran-

sition temperature T
c
being functions of the "pressure". A singularity of the

type (141.14) will also occur in the compressibility and in the thermal expan-
sion coefficient of the lattice.

The degree of ordering 17 of the lattice is represented in this model by the

mean dipole moment at a lattice point (the "spontaneous polarisation" of the

lattice), which is non-zero below the transition point and zero above it. The
temperature dependence of this quantity can also be determined.* Without
pausing to give the derivation, we shall simply state the final result for the

manner in which the degree of ordering tends to zero as the transition point

is approached

:

r\ = constant X (TC -T)V*. (141.15)

t This problem also was first solved by L. Onsager (1947). The simplest method of
solution is given by N. V. Vdovichenko, Soviet Physics JETP 21, 350, 1965.



CHAPTER XV

SURFACES

§142. Surface tension

Hitherto we have entirely neglected effects resulting from the presence of

surfaces of separation between different bodies.1" Since, as the size of a body

(i.e. the number of particles in it) increases, surface effects increase much

more slowly than volume effects, the neglect of surface effects in the study of

volume properties of bodies is entirely justified. There are, however, a number

of phenomena which depend in fact on the properties of surfaces of separation.

The thermodynamic properties of such an interface are entirely described

by one quantity, a function of the state of the bodies, denned as follows. We

denote by § the area of the interface, and consider a process whereby this

area undergoes a reversible change by an infinitesimal amount d§. The work

done in such a process is obviously proportional to d§, and so can be written

as

dR = ad§. (142.1)

The quantity a thus defined is a fundamental characteristic of the interface,

and is called the surface-tension coefficient.

Formula (142.1) is exactly analogous to the formula dR = -P dFfor the

work done in a reversible change in the volume of a body. We may say that a

plays the same part in relation to the surface as the pressure does in relation

to the volume. In particular, we can easily show that the force on unit length

of the perimeter of any part of the interface is equal in magnitude to a and is

directed tangentially to the surface and along the inward normal to the peri-

meter.

Here we have assumed that a is positive. The fact that it must indeed always

be positive is shown immediately by the following argument. If a < 0, the

contour bounding the surface would be subject to forces along the outward

normal, i.e. tending to "stretch" the surface; the interface between two phases

would therefore tend to increase without limit, and the phases would mix

and cease to exist separately. If a > 0, on the other hand, the interface tends to

become as small as possible (for a given volume of the two phases). Hence,

t In reality, of course, phases in contact are separated by a thin transition layer, but the

structure of this is of no interest here, and we may regard it as a geometrical surface.

455
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for example, if one isotropic phase is surrounded by another, it will take the
form of a sphere (the effect of an external field, e.g. gravity, being neglected,
of course).

Let us now consider in more detail the surface tension at the interface
between two isotropic phases, liquid and vapour, of the same substance. If
an interface between two phases in equilibrium is concerned, it must be re-

membered that their pressure and temperature are in a definite functional rela-
tion given by the equation of the phase equilibrium curve, and a is then essen-
tially a function of only one independent variable, not of two.
At a critical point, the liquid and gas phases become identical. The inter-

face between them ceases to exist, and a must become zero. The law governing
this vanishing ofa is not yet known.
We can apply qualitatively the law of corresponding states (§85) to the

surface tension between the liquid and its vapour. According to this law we
should expect that the dimensionless ratio of a to a quantity of dimensions
erg/cm2 formed from the critical temperature and critical pressure would be a
universal function of the reduced temperature T/T

c
f

a/(rcpc
2)i/3=/

(r/rc). (142.2)

When surface effects are neglected, the differential of the energy of a sys-

tem of two phases (of the same substance), for a given total volume V of the
system, is dE — TdS+pdN; in equilibrium, the temperatures T and chem-
ical potentials [x of the two phases are equal, and this equation can therefore
be written for the whole system. When the presence of surface effects is taken
into account, the right-hand side of the equation must clearly include also
the expression (142. 1) :

dE = TdS+ft d7V+ad3. (142.3)

It is, however, more convenient to take as the fundamental thermodynamic
quantity not the energy but the potential Q, the thermodynamic potential in

terms of the independent variables T and /x (and the volume V). The conve-
nience ofQ in this case arises because Tand (x are quantities which have equal
values in the two phases, whereas the pressures are not in general equal when
surface effects are taken into account; see §144. For the differential dQ, again
with V = constant, we have

dQ = -S dT-NdfM+x d$. (142.4)

The thermodynamic quantities (such as E, Q and S) for the system under
consideration can be written as the sum of a "volume" part and a "surface"
part. This division, however, is not unique, since the number of particles in

t At temperatures considerably below the critical temperature this ratio is approximately
equal to 4.
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each phase is indeterminate to the extent of the number of particles in the

transition layer between the phases; the same is true of the volumes of the

phases. This indeterminacy is of just the same order of magnitude as the

surface effects with which we are concerned. The division can be made unique

if the following reasonable condition is imposed: the volumes Vx and V2 of

the two phases are defined so that, in addition to the equation Vi+ V2 = V,

where V is the total volume of the system, the equation n 1V1+ n 2V2 = N is

satisfied, where N is the total number of particles in the system, and m =

mifj,, T) and n2
= n2(/x, T) are the numbers of particles per unit volume in

each phase (the phases being regarded as unbounded).

These two equations determine the choice of the volumes Vi and V2 (and

the numbers of particles Ni = mKi, N2 = n2V2), and hence also the volume

parts of all other thermodynamic quantities. We shall denote volume parts

by the suffix v, and surface parts by the sufifix s; by definition, Ns = 0.

From (142.4) we have, for constant T and (x (and therefore constant a),

dQ = a d§; it is therefore evident thatQs
= <x§, and so

Q = QV +«.Z.
(142.5)

Since the entropy S = -(9£/97\ 8 , the surface part of it is
t

S8
= -dQJdT = -3 da/dT. (142.6)

Next, let us find the surface free energy; since F = Q+Np andNs = 0,

F8
= oft. (142.7)

The surface energy is

E8
= FS+TS8

= (a-rda/dr)§. (142.8)

The quantity of heat absorbed in a reversible isothermal change of surface

area from §i to ^2 is

Q = nS*-Sm)= ~ T (da/dTX*i-8i). (142-9)

The sum of the heat Q and the work R = a(§2-3i) in this process is equal to

the change in energyEs2
-EsV as it should be.

PROBLEM

Find the limiting law of temperature dependence of the surface tension of liquid helium

at low temperatures (K. R. Atkins 1953).

Solution. We calculate the surface part F. = Sa of the free energy by means of formula

(61.1), in which the frequencies ma now relate to oscillations of the liquid surface. In the

t The coefficient a is a function of only one independent variable; for such a function

the partial derivatives with respect to (i and T have no meaning. But, by putting Ns -

-(QQJdfi)? = 0, we have formally assumed that @a/fyt), = 0; in this case we clearly

have da/dT = (Sa/ST)^, and this has been used in (142.6).
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two-dimensional case the change from summation to integration requires a factor ${2nk dk)/
(2a)2 . Integrating by parts, we find

F, = te +S(T/2n) j log (1 -e-halT)k dk = 3a -3(/i/4;t) f k2 dcol(e
ha,,T

-\),

where a is the surface tension at T = 0. At sufficiently low temperatures, only the oscilla-
tions at low frequencies are important, i.e. those with small wave numbers (long wave-
lengths). Such oscillations are hydrodynamic capillary waves, for which eo2 = (a/g)k3 ss

(* /e)k
8
, where o is the density of the liquid, t Hence

h (q<x„-— I
— 2/s r co*l 3 dco

$ /
o

since the integral converges rapidly, the upper limit may be taken as infinity. The integra-
tion (carried out as in the second footnote to §57) gives

T713 lo\ 2 >z

a = a°~ 4^473 ("£-) r(7/3)C(7/3) = a -0.13r7'V/3
//i*/

3a2/3.

§143. Surface tension of crystals

The surface tension of an anisotropic body, a crystal*, is different at differ-

ent faces; it may be said to depend on the direction of the face, i.e. on its

Miller indices. The form of this dependence is somewhat unusual. Firstly, the

difference in the values of a for two crystal planes with arbitrarily close direc-

tions is itself arbitrarily small, i.e. the surface tension can be represented as a
continuous function of the direction of the face. It can nevertheless be shown
that this function nowhere has a definite derivative. For example, if we consi-

der a set of crystal planes intersecting along a common line, and denote by 4>

the angle of rotation around this line, which defines the direction of the plane,

we find that the function a = a(^) has two different derivatives for every
value of <j>, one for increasing and the other for decreasing values of the argu-
ment."

Let us suppose that the surface tension is a known function of the direc-

tion of the faces. The question arises how this function can be used to deter-

mine the equilibrium form of the crystal. (It must be emphasised that the
crystal shape observed under ordinary conditions is determined by the condi-

tions of growth of the crystal and is not the equilibrium shape.) The equilib-

rium form is determined by the condition for the potentialQ to be a minimum

t See Fluid Mechanics, §61. The derivation given here applies only to liquid He* and
temperatures so low that the whole mass of the liquid may be regarded as superfluid. In a
Fermi liquid (liquid He8

), capillary waves of this kind do not exist, because the viscosity
increases indefinitely as T — 0.

t That is, the surface tension at an interface between the crystal and a gas or liquid.
II This is discussed in more detail by L. D. Landau, Sbornik v chest'' 70-letiya A. F. Ioffe,

p. 44, Moscow 1950; translation in Collected Papers of L. D. Landau, p. 540, Pergamon'
Oxford 1965.
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(for given T, p, and volume V of the crystal) or, what is the same thing, by

the condition for its surface part to be a minimum. The latter is

Q6
=

(J)

a d§,

the integral being taken over the whole surface of the crystal; for an isotropic

body a = constant, Qs
= a&, and the equilibrium form is determined simply

by the condition for the total area § to be a minimum, i.e. it is a sphere.

Let z = z(x, v) be the equation of the surface of the crystal, and let p =

dz/dx, q = dz/dy denote the derivatives which determine the direction of

the surface at each point ; a can be expressed as a function of these, a = <x(p, q).

The equilibrium form is given by the condition

<x(p, q) VCl +p2+q2
) dx dy = minimum (143.1)

with the added condition of constant volume

z dx dy = constant. (143.2)

I'

f
This variational problem leads to the differential equation

A^+iL^ = 2A, (143.3)
3jc dp dy dq

where

f(p, q) = <*(/>, q) V(l +P2+1Z
) (143 -4>

and A is a constant.

Next, we have by definition dz = pdx+qdy; with the auxiliary function

Z=px+qy-z, (143.5)

we find d£ = x dp+y dq or

x = dC/dp, y = 9t/a?, (143.6)

£ being here regarded as a function of p and q. Writing the derivatives with

respect to x and y in (143.3) as Jacobians, multiplying both sides by 6(x, v)/

8(p, q) and using (143.6), we obtain the equation

d(df/dp,d£/dq) d(dt/dp,df/dq) = . d(d£ldp, 8£/3g)

d(p,q) 9(/>,<7) 9(P><7)

This equation has an integral/ = AC = Mj>x+qy— z), or

This is just the equation of the envelope of the family of planes

px+qy-z = ol(P, q) V(l+/>
2 +<72)M> (143 -8)

wherep and q act as parameters.
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This result can be expressed in terms of the following geometrical construc-
tion. On each radius vector from the origin we mark off a segment of length
proportional to x(p, q), where p and q correspond to the direction of that
radius vector. 1" A plane is drawn through the end of each segment at right
angles to the radius vector; then the envelope of these planes gives the equilib-
rium form of the crystal (G. V. Vul'f).

It can be shown* that the unusual behaviour of the function a mentioned
at the beginning of this section may have the result that the equilibrium form
of the crystal determined by this procedure will include a number of plane
areas corresponding to crystal planes with small values of the Miller indices.
The size of the plane areas rapidly decreases as the Miller indices increase. In
practice this means that the equilibrium shape will consist of a small number
of plane areas which are joined by rounded regions instead of intersecting at
sharp angles.

§144. Surface pressure

The condition for the pressures of two phases in contact to be equal has
been derived (in §12) from the equality of the forces exerted on the interface
by the two phases; as elsewhere,- surface effects were neglected. It is clear,
however, that if the interface is not plane a displacement of it will in general
change its area and therefore the surface energy. In other words, the exis-
tence of a curved interface between the phases leads to additional forces,
as a result of which the pressures of the two phases will not be equal. The
difference between them is called the surface pressure.

Thus the conditions of equilibrium now require only that the temperature
and the chemical potential should be constant throughout the system. For given
values of these quantities, and of the total volume of the system, the thermo-
dynamic potential Q must be a minimum (with respect to a displacement of
the interface).

Let us consider two isotropic phases (two liquids, or a liquid and a vapour).
Having in view only the thermodynamic aspects of the problem, we shall

assume that one of the phases (phase 1) is a sphere surrounded by the other
phase. 11 Then the pressure is constant within each phase, and the total thermo-
dynamic potentialQ of the system is

£ = -PiKi-Pa^a+ oa (144.1)

the first two terms forming the volume part of the potential; the suffixes 1

and 2 refer to the two phases.

1" The direction cosines of the radius vector are proportional top, q, -1.
% See the paper quoted in the second footnote to this section.
II The general case of an arbitrary shape of the interface is discussed in Fluid Mechanics

§60.
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The pressures of two phases in equilibrium satisfy the equations fii(P, T) =

psCPs, T) = ii, where n is the common value of the two chemical poten-

tials. Hence, for constant p and T, we must regard Pi and P2 as constant also,

and likewise the surface-tension coefficient a. Since Vi+ V2 is constant, we

find as the condition forQ to be a minimum

d& = -(P1-P2) d^i+adS = 0.

Finally, substituting Vx = 4tw3
/3, § = 4nr2 (where r is the radius ofthe sphere),

we obtain the required formula:

P1-P2
= 2oe/r. (144.2)

For a plane interface (r — «>) the two pressures are equal, as we should

expect.

Formula (144.2) determines only the difference between the pressures in

the two phases. We shall now calculate each of them separately.

The pressures Pi and P2 satisfy the equation j»i(Pi, T) = fx2(P2 , T). The

common pressure P in the two phases when the interface is plane is deter-

mined at the same temperature by the relation (*i(Po, T) = n2(Po, T). Sub-

traction of these two equations gives

pi(Plf T)-in(Po, T) = [i2iP2 , T)-fx2(Po, T). (144.3)

Assuming that the differences bPx = P1-P0, &P* = P2-P0 are relatively

small and expanding the two sides of equation (144.3) in terms of dPt and

dP2 , we find

vi«Pi = v26P2 ,
(144.4)

where vi and v2 are the molecular volumes (see (24.12)). Combining this with

formula (144.2) written in the form 6P1-6P2 = 2a/r, we find the required

dPi and bP2 as

bPl =
?a J^_ bp = 2a _v±__
r v 2-vx r v 2-vi

For a drop of liquid in a vapour, vi<^ v2 ; regarding the vapour as an ideal

gas, we have v 2 = T/P2 s= T/Po, and so

dPi = 2a/r, bP
g
= IvpPo/rT, (144.6)

where for clarity the suffixes / and g are used in place of 1 and 2. Thus we see

that the vapour pressure over the drop is greater than the saturated vapour

pressure over a plane liquid surface, and increases with decreasing radius of

the drop.

When the drop is sufficiently small and dPJPo is no longer small, formulae

(144.6) become invalid, since the large variation of the vapour volume with

pressure means that the expansion used to derive (144.4) from (144.3) is no
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longer permissible. For a liquid, whose compressibility is small, the effect of
a change of pressure is slight, and the left-hand side of (144.3) can again be
replaced by v

l
bP

l
. On the right-hand side we substitute the chemical poten-

tial of the vapour in the form p = T log P
g
+%(T), obtaining

6P
t = P

t
-P = (T/vd log (P

g/P ).

Since in this case 6P
t
» bP

g, the difference Pj-Po can be replaced by P
t
-P

;

using formula (144.2) for the surface pressure, we then have finally

log (P
g/Po) = 2*v

t
/rT. (144.7)

For a bubble of vapour in a liquid we similarly obtain the same formulae
(144.6), (144.7) but with the opposite signs.

§145. Surface tension of solutions

Let us now consider an interface between a liquid solution and a gas phase
(a gas and a solution of it in a liquid, a liquid solution and its vapour, etc.).

As in §142, we divide all thermodynamic quantities for the system under
consideration into volume and surface parts, the manner of division being
determined by the conditions V = Vx+V2i N = Nx+N% for the volume and
number of solvent particles. That is, the total volume V of the system is divid-

ed between the two phases in such a way that, on multiplying Ki and V2 by
the corresponding numbers of solvent particles per unit volume, and adding
we obtain just the total number N of solvent particles in the system. Thus by
definition the surface part N

s
= 0.

As well as other quantities, the number of solute particles will also be writ-

ten as a sum of two parts, n = nv+ns
. We may say that n

v
is the quantity of

solute which would be contained in the volumes Vx and V2 if it were distri-

buted in each with a constant concentration equal to the volume concentra-
tion of the corresponding solution. The number nv thus defined may be either

greater or less than the actual total number n of solute particles. If n =
= n—nv > 0, this means that the solute accumulates at a higher concentra-
tion in the surface layer (called positive adsorption). If n

s
< 0, the concentra-

tion in the surface layer is less than in the volume (negative adsorption).

The surface-tension coefficient of the solution is a function of two inde-

pendent variables, not one. Since the derivative of the potential Q with
respect to the chemical potential is minus the corresponding number of par-
ticles, n

s can be found by differentiating Q
s
= o& with respect to the chem-

ical potential fi' of the solute :
f

ns = -dQJdfi' = -SCSa/a^T- (145.1)

t The coefficient a is now a function of two independent variables, e.g. ft' and T; the
derivative dQ,/dfi' must be taken at constant T and chemical potential fi of the solvent.
The condition N.= - (dQJd/i)^

t
T=0 used here implies that we formally take (d<x/dfi)

lu ,
t
T =

and therefore we can write equation (145.1) (cf. the third footnote to §142).
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Let us assume that the pressure of the gas phase is so small that its effect on

the properties of the liquid phase may be neglected. Then the derivative of a

in formula (145.1), which must be taken along the phase equilibrium curve

at the temperature concerned, can be replaced by the derivative at constant

(viz.zero) pressure (and constant T). Regarding a as a function of the temper-

ature and the concentration c of the solution, we can rewrite formula (145.1)

as

n8
= -8id*/dc)T{dc/dtA')T,p. (145.2)

According to the thermodynamic inequality (98.7), the derivative (dfi'/dc) Tt p

is always positive. Hence it follows from (145.2) that n
s
and (8a/8c)T have

opposite signs. This means that, if the solute raises the surface tension (a

increases with increasing concentration of the solution), it is negatively

adsorbed. Substances which lower the surface tension are positively adsorbed.

If the solution is a weak one, the chemical potential of the solute is of the

form p,' = Tlog c+y(P, T); substituting this in (145.2), we find

„s
= -§(c/r)(8a/6c)T . (145.3)

A similar formula,

n8
= -§(P/r)(8a/8P)T ,

(145.4)

is obtained for the adsorption of a gas (at pressure P) by a liquid surface.

If not only the solution but also the adsorption from it is weak, a can be

expanded in powers of c; we have approximately a = a +aic, where a is

the surface tension at the interface between two phases of pure solvent. Then

we have from (145.3) ai = —n
8T/$c, and hence

a-a = -n.773. (145.5)

The resemblance between this formula and van 't Hoff's formula for the os-

motic pressure should be noticed (the volume being here replaced by the

surface area).

§146. Surface tension of solutions of strong electrolytes

The change in surface tension of a liquid when a strong electrolyte is dis-

solved in it can be calculated in a general form for weak solutions (L. Onsager

and N. N. T. Samaras 1934).

Let wa(x) denote the additional energy of an ion (of the ath kind) because

ofthe free surface at a distance x from the ion (wa(x) tending to zero as x — «>).

The ion concentration near the surface differs from its value ca within

the solution by a factor e~ WalT =* 1—wJT. The contribution of the surface
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to the total number of these ions in the liquid is therefore

n = -**
vT

wa dx, (146.1)

where v is the molecular volume of the solvent.

To calculate the surface tension, we begin from the relation

3 da = -JXsd/Za, (146.2)
a

where the summation is over all the kinds of ion in the solution. For weak
solutions (n'a = Tlog ca +y>J,

3da= -T^^-dCa. (146.3)

Substitution of (146.1) gives,

eo

da = — Z dca wa dx. (146.4)

o

It will be seen from the subsequent results that the main contribution to
the integral comes from distances x which are large compared with the
distances between molecules but small compared with the Debye-Huckel
length l/x.

The energy wa consists of two parts

:

Wa =
i^TIJ ^T+^W- (146.5)

The first term arises from the "image force" on a charge eza in a medium
with dielectric constant e at a distance x from its surface. Since ^«l/x,
the screening effect of the ion cloud round the charge does not alter this

energy. In the second term, <f>(x) denotes the change (owing to the presence
of the surface) in the field potential due to all the other ions in the solution.

This term is unimportant here, however, since it disappears on substituting

(146.5) in (146.4) because of the electrical neutrality of the solution
(J] caza

=
0, and therefore J za dca = 0).

Thus, carrying out the integration in (146.4), we find

The logarithmic divergence of the integral at both limits confirms the state-

ment made above concerning the range of integration; we have naturally

taken as the upper limit the screening length l/«, and as the lower limit a
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quantity aa of the order of atomic dimensions, but different for the different

kinds of ion. Since x2 is proportional to the sum £ za
2ca , we see that the ex-

pression obtained is a total differential and so can be integrated directly,

giving

-«-£&?«»"l£- (146 -6)

b

where ao is the surface tension of the pure solvent and the Aa are dimensionless

constants.

This formula gives the solution of the problem. It should be noticed that

the dissolution of a strong electrolyte increases the surface tension of the

liquid.

§147. Adsorption

Adsorption is the restricted sense includes cases where the solute is almost

entirely concentrated at the surface of a solid or liquid adsorbent*, and hardly

any of it enters the volume of the adsorbent. The "adsorbed film" thus

formed can be described by the surface concentration y, defined as the number

of particles of the adsorbate (adsorbed substance) per unit surface area. At low

pressures of the gas from which adsorption occurs, the concentration y must

be proportional to the pressure* ; at high pressures, however, y increases less

rapidly and tends to a limiting value corresponding to the formation of a

monomolecular layer with the adsorbate molecules closely packed together.

Let /jl' be the chemical potential of the adsorbate. By the same method as

was used in §98 for ordinary solutions we can derive for adsorption the

thermodynamic inequality

(dfi'/dyh > 0, (147.1)

which is entirely analogous to (98.7). From (145.1) we have

y = -(da/dfi')T = -(8a/6y)r(8y/9/ii')T, (147.2)

and (147.1) therefore implies that

(6a/8y)T < 0, (147.3)

i.e. the surface tension decreases as the surface concentration increases.

The minimum work which must be done to form the adsorbed film is equal

to the corresponding change in the thermodynamic potential Q :

*min = 8(a-a ), (147.4)

t For definiteness we shall consider adsorption from a gas phase.

% This rule is, however, not obeyed in practice for adsorption on a solid surface, since

such a surface is never sufficiently homogeneous.
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where ao is the surface tension on the surface before adsorption. Hence, using

(92.4), we find the heat of adsorption

8=-^^^) (147.5)

The adsorbed film may be regarded as a kind of "two-dimensional" thermo-

dynamic system, which may be either isotropic or anisotropic, despite the

isotropy of the two volume phases.
1- The question arises of the possible types

of symmetry of the film.

The analogue of ordinary solid crystals would be a "solid crystalline" film

with the atoms regularly arranged at the points of a two-dimensional (plane)

lattice. This arrangement could be described by a two-dimensional "density

function" q(x, y) (cf. §128). However, an investigation similar to that given

in §128 for the three-dimensional case shows that such a lattice can not exist,

since it would be "smoothed out" by thermal fluctuations (and so the only

possibility is q = constant) : the mean square of the fluctuation displacement

is given by an integral of the same form (128.2) as for the three-dimensional

crystal lattice

:

dk~ dk„

0nfe ky)

but in the two-dimensional case this integral is logarithmically divergent for

small values of the wave number.

To avoid misunderstanding, however, the following comment is necessary.

The investigation just mentioned shows only that the fluctuation deformations

become infinite as the dimensions (area) of the system increase without limit*,

whereas for a three-dimensional crystal lattice the characteristic property is

that these deformations remain finite even for an infinite system. In practice,

however, the size of the film for which the fluctuations still remain small may

be quite large. In such cases a film of finite size might exhibit the properties

of a solid crystal and we could approximately describe it as a two-dimensional

lattice.

For a two-dimensional film regarded as an infinite structure we can strictly

speak only of the symmetry of the correlation between the positions of differ-

ent molecules when the position of one of them is specified; in this sense the

anisotropic film is a two-dimensional analogue of three-dimensional liquid

crystals (see §129). Accordingly, the types of symmetry of films must be

t Here we are considering adsorption on a liquid surface; adsorption on a solid surface

is of no interest from this point of view, since, as mentioned above, such a surface is almost

always inhomogeneous.

It may be noted that anisotropy of the interface between two isotropic phases (liquid

and vapour) of the same pure substance is also possible in principle.

t Thus allowing us to consider arbitrarily small wave numbers.



§148 Wetting 467

classified according to point groups (combinations of planes and axes of

symmetry). The rotations about axes and reflections in planes must, of course,

leave the plane of the film unchanged and furthermore must leave the relative

position of the two phases on either side of the film unchanged (this means

that a plane of symmetry coinciding with the plane of the film is not possible).

Thus the film can have only an axis of symmetry perpendicular to its plane

and planes of symmetry passing through this axis, i.e. the possible types of

symmetry of the film are restricted to the point groups Cn and Cnv .

As in three-dimensional bodies, so also in two-dimensional films there can

exist different phases between which transitions of either the first or the second

kind can occur. Transitions of the second kind are possible only between

phases of different symmetry, but transitions of the first kind can occur

between any phases, of either different or the same symmetry, including

transitions between two isotropic phases of the gas-liquid type. The equilib-

rium conditions for the two phases of the film require that their surface ten-

sions as well as their temperatures and chemical potentials should be equal.

The condition concerning the surface tensions corresponds to the condition

of equal pressures for volume phases and simply expresses the equality of the

forces exerted by the two phases on each other.

§148. Wetting

Let us consider adsorption on the surface of a solid from a vapour at a

pressure close to the saturation value. The equilibrium concentration y is

determined by the condition that the chemical potential of the adsorbate //

is equal to that of the vapour ng . Various cases can occur according to the

dependence of \i' on y.

Let us suppose that the quantity of adsorbate gradually increases and the

adsorbed layer becomes a liquid film of macroscopic thicknessrThe "surface

concentration" y then becomes a conventionally defined quantity propor-

tional to the film thickness d: y = gd/m, where m is the mass of a molecule

and q the density of the liquid. As the film thickness increases, the chemical

potential of the substance forming it tends to /*„ the chemical potential of the

liquid in bulk. We shall measure the value of y! (for given P and T) from this

limiting value, i.e. write ju' + ft in place of //; thus, by definition, // - as

y -* °°.

The chemical potential of the vapour can be written as [x
g
= ^00+

T\og(p/p ), where p (T) is the saturated vapour pressure; here we have

used the fact that the saturated vapour is, by definition, in equilibrium with

the liquid, i.e. we must have pg
= /*, when p = p S The surface concentration

t The liquid itself is regarded as incompressible, i.e. we neglect the dependence of its

chemical potential on the pressure.
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is determined by the condition fi'+ n L
= p,g

, or

fx'(y) = T\og(p/p ). (148.1)

If this equation is satisfied by several values of y, the one which corresponds

to a stable state is that for which the potential Q
s

is a minimum. Taking the

value per unit area of the surface, we obtain a quantity which may be called

(in the general case of any film thickness) the "effective surface-tension

coefficient" a at the solid-vapour boundary, and which takes into account the

presence of the layer between them. Integrating the relation (147.2), we can

write

«(r) =
J

7^- dy+ ari + a,
a

. (148.2)

V

The constant is so chosen that as y — °° the function <x(y) becomes the sum of

the surface tensions at the "bulk"-phase (solid-liquid and liquid-gas) inter-

faces.

It may also be recalled that a necessary condition for the thermodynamic
stability of a state is the inequality (147.1), which is valid for any y.

Let us now consider some typical cases which may occur, depending on the

nature of the function fi'(y). In the diagrams given below, the continuous

curve shows the form of this function in the region of macroscopically thick

films of liquid, while the broken curve is that for adsorbed films of "molec-

ular" thickness. It is, of course, not strictly possible to represent the func-

tion in these two regions in one diagram to the same scale, and to this extent

the diagrams are a convention.

In the first case shown (Fig. 69a) the function ix'(y) decreases monotonically

with increasing y (i.e. with increasing film thickness) in the range of macro-

scopic thicknesses. For molecular dimensions the function p!{y) always tends

to -oo as Tlog y when y -*• 0, this law corresponding to a "weak solution"

of the adsorbate on the surface. The equilibrium concentration is determined,

according to (148.1), by the point of intersection of the curve with a horizontal

line p! = constant «s 0. In this case, this can occur only at molecular con-

centrations, i.e. ordinary molecular adsorption must occur, as discussed in

§147.

If p'(y) increases monotonically but is everywhere negative (Fig. 69b), then

in equilibrium a liquid film of macroscopic thickness is formed on the surface

of the adsorbent. In particular, when the pressure p = p (saturated vapour),

the film formed must be so thick that the properties of the substance in it do
not differ from those of the liquid in bulk, i.e. the saturated vapour must be

in contact with its own liquid phase. In that case we say that the liquid

completely wets the solid surface in question.
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More complicated cases are also theoretically possible. For example, if the

function //(y) passes through zero and has a maximum (Fig. 69c) we have a

case of wetting but with formation of a film stable only at thicknesses below a

certain limit. The film of finite thickness corresponding to the point A is in

-r

Fig. 69

equilibrium with the saturated vapour. This state is separated from the other

stable state (equilibrium of the solid wall with the bulk liquid) by a metastable

region AB and a region of complete instability BC.

The type of curve shown in Fig. 69d corresponds to a film which is unstable

over a certain range of thickness. The line BF which cuts off equal areas BCD
and DEF joins points B and F which have equal values of a (and equal /*'),

as is easily seen from (148.2). The branches AB and FG correspond to stable

films; the range CE is completely unstable, while BC and EF are metastable.

The two boundaries of the instability range (the points B and F) correspond
in this case to macroscopic film thicknesses. Instability in the range from a

certain macroscopic thickness to molecular thicknesses would correspond to a

curve of the type shown in Fig. 69e, but such a curve would more likely lead

to non-wetting, since the limit of stability would correspond to a point on BC
where a horizontal line cuts off equal areas below the upper part and above
the lower part of the curve. But this is usually impossible, since the latter area,

which is related to the van der Waals forces (see below), is small compared
with the former, which is related to the considerably greater forces at molec-
ular distances. This means that the surface tension everywhere on BC is

greater than that which would correspond to molecular adsorption on a solid

surface, and the film will therefore be metastable.

The chemical potential of the liquid film (measured from (ij) represents the

difference between the energy of the substance in the film and that in the
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bulk liquid. It is therefore clear that yi! is determined by the interaction forces

between atoms at distances large compared with atomic dimensions and ~d
(van der Waals forces). The potential ii'(d) can be calculated in a general

form, the result being expressed in terms of electromagnetic properties of the

solid wall and the liquid, namely their permittivities^

§149. The angle of contact

Let us consider three bodies in contact, solid, liquid and gas (or one solid

and two liquid), distinguishing them by suffixes 1, 2, 3 respectively and denot-

ing the surface-tension coefficients at the interfaces by ai2, 0C13, a23 (Fig. 70).

<x

arc

2

Fig. 70

Three surface-tension forces act on the line where all three bodies meet,

each force being in the interface between the corresponding pair of bodies.

We denote by 6 the angle between the surface of the liquid and the plane

surface of the solid, called the angle of contact. The value of this angle is

determined by the condition of mechanical equilibrium: the resultant of the

three surface-tension forces must have no component along the surface of the

solid. Thus ai3 = oci2+a23 cos 6, whence

cos 6 = (ai3-ai 2)/a 23 . (149.1)

If a13 > ai2, i.e. the surface tension between the gas and the solid is greater

than that between the solid and the liquid, then cos 6 > and the angle of

contact is acute, as in Fig. 70. If a 13 < ai2 , however, the angle of contact is

obtuse.

From the expression (149.1) we see that in any actual case of stable contact

the inequality

| <*i3— a i2 |

=s <x 23 (149.2)

must necessarily hold, since otherwise the condition of equilibrium would lead

t See I. E. Dzyaloshinskii, E. M. Lifshitz and L. P. Pitaevskii. Soviet Physics

Uspekhi4, 153, 1961 ; Advances ofPhysics 10, 165, 1961.
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to an imaginary value of the angle 0, which has no meaning. On the other

hand, if a12, ai3 , a23 are regarded as the values of the corresponding coeffi-

cients for each pair of bodies by themselves, without the third one, then it may

well happen that the condition (149.2) is not satisfied. Actually, however, it

must be remembered that when three different substances are in contact there

may in general be an adsorbed film of each substance on the interface between

the other two, and this lowers the surface tension. The resulting coefficients

a will certainly satisfy the inequality (149.2), and such adsorption will neces-

sarily occur if the inequality would not be satisfied without it.

If the liquid completely wets the solid surface, then a macroscopically thick

liquid film, not an adsorbed film, is formed on the surface. The gas will

therefore be everywhere in contact with the same liquid substance, and the

surface tension between the solid and the gas is not involved at all. The con-

dition of mechanical equilibrium gives simply cos = 1, i.e. the angle of

contact is zero.

Similar arguments are valid for contact between three bodies of which none

is solid: a liquid drop (3 in Fig. 71) on the surface of another liquid (1)

?23

Fig. 71

adjoining a gas (2). In this case the angles of contact Bx and 2 are determined

by the vanishing of the resultant of the three surface-tension forces, i.e. of

their vector sum:
ai2+ai3+a23 = 0. (149.3)

Here it is evident that none of the quantities oci2 , ai3 , a23 can be greater than

the sum or less than the difference of the other two.

§150. Nucleation in phase transitions

If a substance is in a metastable state, it will sooner or later enter another

state which is stable. For example, supercooled vapour in time condenses to

a liquid; a superheated liquid is converted into vapour. This change occurs

in the following manner. Owing to fluctuations, small quantities of a new

phase are formed in an originally homogeneous phase ; for example, droplets

of liquid form in a vapour. If the vapour is the stable phase, these droplets are
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always unstable and eventually disappear. If the vapour is supercooled, how-

ever, then when the droplets formed in it are sufficiently large they are stable

and in time begin to grow and form a kind of centre of condensation for the

vapour. The droplets must be sufficiently large in order to compensate the

unfavourable energy change when a liquid-vapour interface is formed.
1.

Thus there is a certain minimum or "critical" size necessary for a nucleus,

as it is called, of a new phase formed in a metastable phase, in order for it to

become a centre for formation of the new phase. Since one phase or the other

is stable for sizes less than and greater than the critical, the "critical nucleus"

is in unstable equilibrium with the metastable phase. In what follows we shall

discuss the probability that such nuclei occur. X Because of the rapid decrease

in the probability of fluctuations of increasing size, the beginning of the phase

transition is determined by the probability that nuclei of just this minimum

necessary size occur.

Let us consider the formation of nuclei in isotropic phases : the formation

of liquid droplets in supercooled vapour, or of vapour bubbles in superheated

liquid. A nucleus may be regarded as spherical, since, owing to its very small

size, the effect of gravity on its shape is entirely negligible. For a nucleus in

equilibrium with the surrounding medium we have, from (144.2), P'—P =

2ot.jr, and the radius of the nucleus is therefore

rcr = 2a/(P'-P); (150.1)

the primed and unprimed letters everywhere refer to the nucleus and to the

main (metastable) phase respectively.

According to the general formula (114.1), the probability w of a fluctuation

producing a nucleus is proportional to exp(-RmiJT), where Rmin is the

minimum work needed to form the nucleus. Since the temperature and chem-

ical potential of the nucleus have the same values as in the surrounding

medium (the main phase), this work is given by the change in the potential Q
in the process. Before the formation of the nucleus, the volume of the meta-

stable phase was V+ V and its potential Q = -P(V+ V); after the forma-

tion of the nucleus of volume V, the potential Q of the whole system is

—PV-P'V'+o&. We therefore have

Rmin = -{P'-P)V+ *&. (150.2)

For a spherical nucleus V = 47ir*/3 and § = 4nr\ and replacing r by (150.1)

we find

Rmia = 167ta3/3(i"-P)2
. (150.3)

t It should be borne in mind that this mechanism of formation of a new phase can

actually occur only in a sufficiently pure substance. In practice, the centres of formation of

the new phase are usually various kinds of "impurity" (dust particles, ions, etc.).

t The calculation of the probability that nuclei of any size occur is given in Problem 2,

and illustrates the relationships described.
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As in §144, we denote by P the pressure of both phases (at a given tempera-

ture T) when the interface between them is plane; in other words, Po is the

pressure for which the given value of Tis the ordinary phase transition point,

from which the superheating or supercooling is measured. If the metastable

phase is only slightly superheated or supercooled, the differences 6P = P— Po,

dP' = P'-P are relatively small and satisfy the equation (144.4):

v'bP' = vdP, (150.4)

where v' and v are the molecular volumes of the nucleus and the metastable

phase. Replacing P'-P by bP'-bP in (150.3) and expressing bP' in terms of

bP from (150.4), we find for the probability of formation of a nucleus in a

slightly superheated or supercooled phase:

w ~ exp
{ " mv-v'?(bpy)

• (150 - 5)

In the formation of vapour bubbles in a superheated liquid we can neglect

v in this formula in comparison with v'

:

w H-iwl- (i5o -6)

In the formation of liquid droplets in a supercooled vapour we can neg-

lect v' in (150.5) in comparison with v t and substitute v = T/P s* r/Po.This

gives

The degree of metastability can be defined by the difference bT = T—T
between the temperature T of the metastable phase (with which the nucleus is

in equilibrium) and the temperature T of equilibrium of the two phases

when the interface is plane, instead of by bP. According to the Clapeyron-

Clausius formula, bTand bP are related by

dp = t<? >\
dT>

To(v—v)

where q is the molecular heat of the transition from the metastable phase to

the nucleus phase. Substituting bP in (150.5), we obtain for the probability

of formation of a nucleus

w~ exp I --5-573==-}. (150.8)
f 167taV2r l

'} 3q*(bT)*
J

If saturated vapour is in contact with a solid surface (the wall of a vessel)

which is completely wetted by the liquid, condensation of the vapour will
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occur without nucleation, directly on this surface. The formation of a liquid

film on the solid surface in this case does not require work to be done to form

the interface, and so the existence of a metastable phase (supercooling of the

vapour) is impossible.

For the same reason, superheating of a solid with a free surface is in gen-

eral impossible. This is because usually liquids completely wet the surface of

a solid phase of the same substance; consequently, the formation of a liquid

layer on the surface of a melting body does not require work to be done to

form a new surface.

The formation of nuclei within a crystal on melting can, however, occur if

the necessary conditions of heating are maintained: the body must be heated

internally and its surface kept at a temperature below the melting point. The

probability of formation of nuclei then depends on elastic deformations

accompanying the creation of liquid droplets within the solid.
1-

PROBLEMS
Problem 1. Determine the probability of formation of a nucleus of a liquid on a solid

surface for a given (non-zero) value of the angle of contact 9.

Solution. The nucleus will have the shape of a segment of a sphere with base radius

;• sin 6, r being the radius of the sphere. Its volume is V — 1
/3.ta

-8
(1 —cos 0)

2
(2 4- cos 0), and

the surface areas of the curved part and the base are respectively 2nr2
(l —cos 0) and.-7r 2sin 2^.

Using the relation (149.1) for the angle of contact, we find that the change in Qg on forma-

tion of the nucleus is

a-2rc/-2(l -cos 6) -a cos Q-nr2 sin2 6 = a;rr 2(l -cos 0)
2
(2+ cos 6),

where a is the surface-tension coefficient between the liquid and the vapour. This change
in Q, is the same as would occur in the formation, in the vapour, of a spherical nucleus of

volume V and surface tension

a -cos 0\*/3a(l^)",

<2+cos«».

Accordingly, the required formulae for the formation of nuclei are obtained from those

derived in the text on replacing a by aeH .

Problem 2. Find the probability of formation of a nucleus of arbitrary dimensions.

Solution. We regard the metastable phase as an external medium containing the

nucleus, and calculate the work of formation of the nucleus from formula (20.2): Rmin =
A(E— T S+P V) or, since in this case the process occurs at constant temperature equal

to the temperature of the medium, Rmln = A(F+P V). To determine this quantity, it is

sufficient to consider only the amount of substance which enters the other phase (since the

state of the remaining substance in the metastable phase remains unchanged). Again denot-

ing the quantities pertaining to the substance in the original and the new phase by unprimed
and primed letters respectively, we have

*min = [F'(P')+PV'+*$\-[F(P)+PV] = 0XP')-<P(P)-(P'-P)V'+u§; (1)

for a nucleus in unstable equilibrium with the metastable phase we should have <P'(P') =
0(P) and thus return to (150.2).

t See I. M. Lifshitz and L. S. Gulida, Doklady Akademii nauk SSSR 87, 377, 523,

1952.
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Assuming the degree of metastability to be small, we have <P'(.P') as <P'(P)+(P'-P)V',

and (1) thus reduces to

where n = V'/v' is the number of particles in the nucleus. For a spherical nucleus,

Anr
~3^*min = -^r\f*P)-p'{P)\ +4™t*. (2)

In the metastability range, fi{P) = (i'(P) and hence the first term (the volume term) is

negative. The expression (2) may be said to describe the potential barrier which has to be

overcome for the formation of a stable nucleus. It has a maximum at

r = rct = 2<xv'/[fi(P)- l
u'(P)],

corresponding to the critical radius of the nucleus. For r < rCT a decrease of r is ener-

getically favourable and the nucleus is absorbed; for r > rcr an increase ot r is favourable

and the nucleus grows.t

§151. Fluctuations in the curvature of long molecules

In ordinary molecules, the strong interaction between atoms reduces the

thermal motion within molecules to small oscillations of the atoms about

their equilibrium positions, which have practically no effect on the shape of

the molecule. Molecules consisting of very long chains of atoms (e.g. long

polymer hydrocarbon chains) behave quite differently, however. The great

length of the molecule, together with the relative weakness of the forces tend-

ing to preserve the equilibrium straight shape of the molecule, means that

the fluctuation curvature of the molecule may become very large and even

cause the molecule to "coil up". The great length of the molecule enables us to

consider it as a kind of macroscopic linear system, and statistical methods

may be used in order to calculate the mean values of quantities describing its

curvature (S. E. Bresler and Ya. I. Frenkel* 1939).*

We shall consider molecules having a uniform structure along their length

(as is true of long polymer chains). Being concerned only with their shape,

we can regard such molecules as uniform continuous threads. The shape of a

thread is defined by specifying at each point in it the "curvature vector" q,

which is along the principal normal to the curve and equal in magnitude to

the reciprocal of the radius of curvature.

The curvature of the molecule is in general small at each point ; since the

molecule is of great length this does not, of course, exclude very large relative

movements of distant points of it. For small values of the vector g, the free

tThe calculation of i?min for r = rcr naturally leads to formula (150.5) if we note that

under these conditions fi{P)— /n\P) s= (v-v')dP.

t In the theory given here, the molecule is regarded as an isolated system, its interaction

with neighbouring molecules being neglected. In a solid or liquid substance this interaction

may, of course, have a considerable effect on the shape of the molecules. Although the

applicability of the results to actual substances is therefore very limited, their derivation is

of considerable methodological interest.



476 Surfaces §151

energy per unit length of the curved molecule can be expanded in powers of

the components of this vector. Since the free energy is a minimum in the equi-

librium position (the straight shape, with g = at every point) linear terms do
not appear in the expansion, and we have

f=WE fl/tt. (151.1)
i, k

where the values of the coefficients a
ik represent the properties of the straight

molecule (its "resistance to curvature") and are constant along its length,

since the molecule is assumed homogeneous.

The vector g is in the plane normal to the line of the molecule at the point

considered, and has two independent components in that plane. Accordingly,

the set of constants aih forms a symmetrical tensor of dimension two and
rank two in this plane We refer this to its principal axes, and denote its prin-

cipal values by a 1} a2 \ the thread which represents the molecule need not be
axially symmetrical in its properties, and so ax and a2 need not be equal. The
expression (151.1) then becomes

F = Fo+i(aiol+ a2Ql),

where gi and q2 are the components of g in the direction of the corresponding

principal axes.

Finally, integrating over the whole length of the molecule, we find the total

change in its free energy due to a slight curvature

:

AFt = i
I

(aiQl + a2ol)dl, (151.2)

where / is a co-ordinate along the thread. It is clear that a\ and a2 are neces-

sarily positive.

Let ta and t
b be unit vectors along the tangents at two points a and b on the

thread separated by a section of length /, and let 6 = 6(1) denote the angle

between these tangents, i.e. ta -t6
= cos 6.

Let us first consider a curvature so slight that the angle 6 is small even for

distant points. We draw two planes through the vector ta and the two princi-

pal axes of the tensor aih
in the normal plane (at the point a). For small 6,

the square of this angle may be written

2 =61+61 (151.3)

where 6\ and 62 are the angles of rotation of the vector t
b relative to t

(l
in

these two planes. The components of the curvature vector are related to the

functions 0i(/) and 62{l) by £i = d0i(/)/d/, o 2 = d02(/)/d/, and the change in

the free energy due to the curvature of the molecule may be written

".-*f[«$M£)' d/. (151.4)



§151 Fluctuations in the Curvature ofLong Molecules 477

In calculating the probability of a fluctuation with given values of 0i(/) = 0i

and 2(O = 02 for a particular /, we must consider the most complete equilib-

rium possible for given 0i and 2 (see the first footnote to §113). That is, we

must determine the minimum possible value of the free energy for given 0i

and 02. An integral of the form

K
d0i\ !

V d/;
d/

o

for given values of the function 0i(O at both limits (0i(O) = 0, 0i(O = #i) has

a minimum value if 0i(/) varies linearly. Then

the fluctuation probability w ~ e
~ AFtlT (see (119.1)), and so we obtain for

the mean squares of the two angles

0f = lTja 1} 0| = ITjaz.

The mean square of the angle 0(/) under consideration is

2 = lT (L+ L\. (151.5)
\ax a%J

In this approximation it is, as we should expect, proportional to the length of

the section of the molecule between the two points.

Curvature with large values of the angles 0(0 may now be treated as fol-

lows. The angles between the tangents ta, t6, t
c
at three points a, b, c on the

thread are related by the trigonometrical formula

cos ae = cos 6ab cos 6be— sin 6ab sin 0^ cos
<f>,

where $ is the angle between the planes (ta , tb) and (t6, t^. Averaging this for-

mula and bearing in mind that, in the approximation considered, the fluctua-

tions of curvature of the sections ab and be of the molecule (for a given direc-

tion of the tangent tb at the middle point) are statistically independent, we

obtain

cos 6ac = cos dab cos dbc

= cos ab cos dbc ;

the term containing cos
<f>

gives zero on averaging.

This relation shows that the mean value cos 6(1) must be a multiplicative

function of the length / of the section of the molecule between two given

points. But for small 0(/) we must have, according to (151.5),

cos 0(/) as \-W= 1-lT/a,
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with the notation 2/a = l/tfi+l/a2 - The function which satisfies both these

conditions is

cos 6(1) = e- lT'a
, (151.6)

and this is the required formula. For large distances /, the mean value'

cos 6 = 0, in accordance with the statistical independence of the directions

of sufficiently distant parts of the molecule.

By means of formula (151.6) it is easy to determine the mean square of the

distance R (measured in a straight line) between the two ends of the molecule.

If t(/) is a unit vector along the tangent at an arbitrary point in the molecule,

the radius vector between its ends is

L

R = f t(/) d/,

where L is the total length of the molecule. Writing the square of this integral

as a double integral and averaging, we obtain

L L L L

~R2 =\ t(/i)-t(/2)d/id/2
= e- Tl-'i-^ a d/id/2 .

The calculation of the integral gives the final formula

#> = 2 (J;V i^L-l+e-
LTlA . (151.7)

For low temperatures (LT «; a) this becomes

R* = L2(l-LT/3a); (151.8)

as T -* the mean square Rz tends to the square of the total length of the

molecule, as it should. IfLT^> a (high temperatures or great lengths L),

R* = ILajT. (151.9)

Then R? is proportional to the length of the molecule, and as L increases

the ratio R2/L2 tends to zero.

§152. The impossibility of the existence of phases in one-dimensional systems

A problem of theoretical interest is that of the possibility of existence of

more than one phase in one-dimensional (linear) systems, i.e. those in which

the particles lie along a line. The following argument shows that in fact
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thermodynamic equilibrium between two homogeneous phases in contact at

a single point and having arbitrarily large extent in length is not possible.

To prove this, let us imagine a linear system consisting of an alternation of

sections formed by two different phases. Let O be the thermodynamic poten-

tial of this system, without allowance for the existence of points of contact be-

tween different phases, i.e. the thermodynamic potential of the total amounts

of the two phases without regard to their division into sections. To take into

account the effect of the points of contact, we note that the system may be

formally regarded as a "solution" of these points in the two phases. If the

"solution" is weak, the thermodynamic potential of the system will be

= O+ nT log (n/eL)+mp,

where n is the number of points of contact in a length L. Hence

d0/dn = T log (n/L) +y.

When the "concentration" n/L is sufficiently small (i.e. for a small number of

sections of different phases), log (n/L) is large and negative, and therefore

d0/dn < 0. Thus decreases with increasing n, and since must tend to a

minimum n will increase (until the derivative d0/dn becomes positive). That

is, the two phases will tend to intermingle in shorter and shorter sections, and

therefore can not exist as separate phases.
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